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ABSTRACT 

In this thesis, a method for testing the dynamic accuracy of micro-electro-mechanical 

systems (MEMS) magnetic, angular rate, and gravity (MARG) sensors was developed. 

Many tests exist to check the static accuracy of MARG and inertial sensors or their 

individual components, but very few tests exist that adequately examine the dynamic 

accuracy of the final sensor package with sufficient precision and test repeatability.  

Based on a previous work that developed an inertial sensor test bench, a new test 

apparatus designed to model the motions of a human arm or leg was built using a rigid 

pendulum with MEMS MARG sensors attached on the end. Building materials were 

chosen to give minimal magnetic interference, and an optical encoder was used to 

accurately track the angle of the pendulum. A LabVIEW data acquisition system was 

built for data collection and a graphical user interface was written in MATLAB for easy 

data processing.  

The MicroStrain 3DM-GX1 and 3DM-GX3 sensors were tested on the new 

apparatus in a variety of dynamic motion tests, including free swinging in vertical and 

horizontal orientations, as well as “swing to impact” and semi-static tests, and their 

performances were compared for different target applications. 
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EXECUTIVE SUMMARY 

Over the past two decades, improvements in semi-conductor manufacturing 

techniques and the demand for low-cost miniaturized sensors has led to the development 

of micro-electromechanical systems (MEMS) sensors to replace larger, bulky sensors and 

open the door to future possibilities. MEMS accelerometers, gyroscopes, and 

magnetometers are being combined into a single package and used for diverse 

applications, from personal navigation systems to human motion tracking. When these 

three types of sensors are combined they are often referred to as magnetic, angular rate, 

and gravity (MARG) sensors. For personal navigation applications, a MEMS MARG 

sensor package can be used to track the distance traveled from an initial point without 

requiring any external references. In human motion tracking, MEMS MARG sensors can 

be placed at key locations on the body to track the wearer’s motion, enabling 

technologies such as immersive virtual reality training for ground forces. 

Although the MEMS MARG sensors are relatively cheap when compared to non-

MEMS sensors, they come at the cost of decreased accuracy. In any application, the 

accuracy should be known, and both static and dynamic accuracies are important. Many 

tests exist to examine the static accuracy of MEMS MARG sensors. However, the test 

apparatuses that exist to measure the dynamic accuracy of accelerometers and gyroscopes 

are typically large metallic structures with robotic motors that have a significant impact 

on the magnetic field measured by a MARG, which could potentially add errors that are 

due entirely to the test apparatus. Additionally, the manufacturer specifications for 

dynamic accuracy are often said to be motion specific and, therefore, tests that exist for 

one type of motion may not adequately represent the expected performance of the sensor 

when subjected to another type of motion. The goal of this thesis was to develop a low 

cost and repeatable way to test the dynamic accuracy of MEMS MARG sensors for use in 

personal navigation or human motion tracking applications. Once a test apparatus was 

built, two sensors would be tested and compared to one another to verify the functionality 

of the test apparatus as well as to determine if one of the sensors was better suited for a 

personal navigation system or a human motion tracking application. The two sensors 



 xviii

tested were the MicroStrain 3DM-GX1 and the MicroStrain 3DM-GX3-25. These 

sensors were chosen because they were used in previous research and were readily 

available in the lab. 

The test apparatus was designed to mimic certain motions that are expected in 

personal navigation and human motion tracking. Both of these applications have a 

significant amount of swinging, such as of the arms or legs and, therefore, the test 

apparatus was designed and built with a pendulum arm that swung freely and had the 

sensors mounted on the end. The test apparatus could be configured with the pendulum 

swinging vertically, or horizontally, with respect to the ground. An absolute optical 

encoder from Gurley Precision Instruments was attached to the axis of rotation of the 

pendulum and used to measure the angular displacement. Depending upon the orientation 

of the sensor at the bottom of the pendulum, the encoder could either provide roll, pitch, 

or yaw truth data. Theoretically, the encoder angular data also could be used to provide 

measurements of the angular rate and accelerations, but it was discovered that the 

encoder data were too noisy to provide sufficient accuracy as a truth source. Therefore, 

only the accuracies of the sensors’ orientation output were examined. 

The apparatus was made out of wood to minimize the impact on the local 

magnetic field, and the apparatus was made as rigidly as possible using 2 x 4s to 

minimize any out of plane motions that would not be captured by the encoder. To 

simulate walking motion, which involves a swing and a sudden stop, an impact arm was 

built with a shoe attached that could be mounted to the test apparatus and oriented 

appropriately to simulate the impact a sensor might experience in a personal navigation 

application. 

Data collection was accomplished using a National Instruments CompactRIO 

cRIO-9012 that had a field-programmable gate array and was configured with an NI 9403 

data collection module. Data collection virtual instruments were written in LabVIEW to 

read the encoder position and to get the orientation of the MicroStrain sensor. When 

collecting the data, it was extremely important that the timing match up between the 

encoder and the sensor, since any errors in the timing could be manifested as errors in the 

sensor accuracy, especially for sinusoidal motion. To mitigate timing errors, a common 



 xix

clock reference was used on the CompactRIO and the data were further post processed to 

align the times in MATLAB. A graphical user interface was built in MATLAB to provide 

a simple way to reduce the data that were collected and then create standard plots to 

rapidly analyze the accuracy. 

Once the new test apparatus and data collection equipment were functional, five 

different types of tests were run. For every type of test the roll, pitch, and yaw accuracies 

were tested, such that 15 unique test configurations were examined for each sensor. The 

five types of test were: Free swinging, arbitrary swinging, semi-static, free swing to 

impact, and free swing to impact and hold. In the free swinging tests, the pendulum arm 

was drawn back to a low, medium, or high mark to the right or left and then released and 

allowed to damp out to rest. All six conditions (low, medium, and high to the right and 

left) were run for each sensor. To conduct the arbitrary swinging tests the pendulum was 

moved about either slowly or quickly in a quasi-random fashion. The semi-static tests 

began at rest and then moved either slowly or quickly to the maximum deflection 

possible, about 70 degrees. The pendulum was held there for about five seconds before 

being released and allowed to swing to a stop. 

For the impact tests, the apparatus was reconfigured with the impact arm. To 

conduct the free swing to impact test the pendulum was drawn back to the low, medium, 

or high mark and then released and allowed to bounce to a stop. The free swing to impact 

and hold test was conducted in a very similar manner, except that Velcro was revealed on 

the pendulum and impact arm and the pendulum was “caught” and held by the Velcro on 

impact. 

The outcome of the testing showed that the new test apparatus worked well and 

could be used to collect repeatable dynamic accuracy data. The test results showed that 

that 3DM-GX1 met its specification requirements most of the time and outperformed the 

3DM-GX3-25 for fast-motion tracking. However, the 3DM-GX1 had significant drift 

issues following dynamic motion that were revealed in the semi-static accuracy tests as 

well as the impact tests. By contrast, the 3DM-GX3-25 errors tended to go to zero over 

time following dynamic motions, but the output tended to lag the truth and the sensor had 

worse accuracy for fast dynamic motions than for slow motions. For both sensors the yaw 
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accuracy was the worst of the three axes. In addition, the impact testing revealed some 

accuracy discontinuities that both sensors experienced which would need to be dealt with 

for personal navigation applications. 

Overall, a low-cost test apparatus was built and combined with an effective data 

collection system that could be used to test and analyze the dynamic accuracy of MEMS 

MARG sensors for use in personal navigation systems or human motion tracking 

applications. Due to the inaccuracies revealed in the dynamic tests, neither sensor tested 

would be an ideal solution for personal navigation or human motion tracking. Between 

the two sensors, the 3DM-GX1 would be the best for such applications since those 

applications have a lot of highly dynamic motions. However, it would be better to 

implement a combination of the two, since the 3DM-GX1 would be accurate over the 

short term and the 3DM-GX3-25 could be used to remove long-term drift errors. 
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I. INTRODUCTION 

A. MOTIVATION 

Semiconductor manufacturing techniques have dramatically improved over the 

last two decades, and the ability to produce small, low-cost sensors such as 

accelerometers, gyroscopes, and magnetometers has become a reality. The widespread 

use of micro-electro-mechanical systems (MEMS) has permeated our daily lives, in 

everything from our cars to our phones. As the demand for MEMS sensors has increased, 

advances in the technology have made low-cost miniature Inertial Measurement Unit 

(IMU) and Magnetic, Angular Rate, and Gravity (MARG) sensor packages possible. 

MEMS IMUs or MARG sensors can be used for many things, from personal 

navigation to immersive virtual reality training. When used in navigation or motion 

tracking the accuracy of the system is very important. The low price of MEMS IMUs and 

MARG sensors often comes at the cost of decreased accuracy and performance when 

compared to more traditional, and more expensive, IMUs and orientation sensor systems. 

Although the accuracy requirements of MEMS IMUs and MARG sensors are dependent 

upon the application of intended use, it is always important to understand the accuracy of 

the sensors being used. 

There are publications that address the accuracy and calibration of individual 

inertial and magnetic sensors. The IEEE has published a standard set of recommended 

practices for testing inertial sensors that covers the types of tests to perform, the test 

equipment required, the data to collect, and how to analyze the data [1]. In addition, 

many technical papers also describe methods used when calibrating MARG type sensors 

and assessing their accuracy. In their work on the design and implementation of a new 

MARG sensor, Bachmann et al. describe the processes they used involving a Haas rotary 

tilt table and a PVC extension arm above the table to assess the accuracy and calibration 

of the sensor’s gyroscopes and accelerometers [2]. In an evaluation of a 3D motion 

sensor with an integrated geomagnetic sensor, Chae and Park describe a magnetic field  
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generating apparatus that was used to artificially create a known magnetic field on the 

device under test for use in device calibration and assessing the accuracy of the 

magnetometers [3].  

These methods and many of those in other publications tend either to require 

specialized expensive equipment or, alternatively, to address the accuracy as individual 

components rather than from a final system point of view, and then often in only static 

cases. For example, specialized equipment like a Haas rotary table can cost thousands or 

tens of thousands of dollars [4]. In addition, [1] suggests a number of structural and 

environmental constraints on test locations that all add to the cost of the facility needed to 

house such expensive pieces of equipment. At the other end of the spectrum, a simple and 

cheap way to test the accuracy of an accelerometer is to set it on a surface that is flat 

relative to the earth’s gravitational field and see how closely it measures one times the 

acceleration due to gravity. This cheap and simple test, and others like it, focuses 

primarily on the static cases since precise dynamic motion is difficult to replicate without 

costly equipment and lab space.  

Dynamic applications of MARG sensors have certain static and dynamic accuracy 

requirements. Often, sensors are employed such that, at certain times, the sensor is at 

rest—and therefore the static accuracy is very important—while at other times the sensor 

will be in dynamic motion, yet still expected to perform well through the full range of 

motion. Many times manufacturers base the performance of their MEMS IMU or MARG 

sensors primarily on their static performance, and little is elaborated with regard to the 

dynamic accuracy. Since motion in three dimensions over time can vary significantly, it 

is often hard to quantify with a simple specification number, and therefore rather than 

attempting to exhaustively test every possible dynamic motion in free space, which 

would be unrealistic, a blanket “dynamic accuracy” value is given with the caveat that it 

is motion dependent and may go outside those bounds. This value is typically a root mean 

square (RMS) error value calculated over the period of use of the system, and it does not 

address the likelihood of deviations during motion nor does it address the expected 

magnitude of any such deviations. Since the full MEMS sensor package needs to be 

tested before it is even selected for a given application so that the short-lived and 
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instantaneous dynamic motion errors can be known, a simple test for the dynamic 

accuracy of a MEMS MARG sensor or IMU is needed. 

There are few examples of simple tests for dynamic accuracy of a MEMS MARG 

sensor. Since the sensors use magnetometers, many of the very precise and expensive 

tests using robotics do not provide representative results (the magnetic field from the 

metal robotic structure and the electric motors introduce errors that would not occur in 

the normal use of the sensor package), or those tests are cost prohibitive. In [5], Cutti et 

al. describe a simple test to determine the dynamic accuracy of an inertial sensor system. 

An array of sensors were mounted in the same orientation in a line on a piece of plastic 

and then manually rotated at a relatively constant rate. The rotation rate was maintained 

with the help of a metronome. Although very simple and cheap, the test is also very 

imprecise and does not produce repeatable results, since variations in how the board is 

spun mean that every sample is going to collect different motion. Also, there is no 

external reference to measure the ongoing accuracy and, as such, only an average value 

can be assessed. Many dynamic applications require accuracy through various rapidly 

changing motions, and so a simple mean value for the dynamic accuracy will not suffice. 

A repeatable method of accurately measuring the dynamic accuracy of a MEMS IMU or 

MARG sensor package is desired. 

In his Master’s thesis, ENS Shaver built a pendulum test apparatus to test the 

dynamic accuracy of a MARG sensor [6]. That apparatus was used as the starting point 

for the tests developed in this thesis. 

B. GOALS 

The objective of this thesis is to develop a low cost, repeatable way to test the 

dynamic accuracy of a MEMS MARG sensor, or IMU. In order to accomplish this, a 

suitable test apparatus must be built or modified such that repeatable tests can be 

performed. The apparatus must be able to reasonably replicate realistic dynamic motions 

that may be encountered in either personal navigation or an immersive virtual reality 

environment, since these are two of the target uses for the sensor packages. At least one 

independent source of truth data must be used. A data collection system must be built up 
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with an effort to synchronize the timing of all data collected, both the truth data and the 

data from the sensor under test. A simple way to analyze the results using a MATLAB 

graphical user interface is desired so that future testing is simplified. Finally, two 

different MEMS MARGs or IMUs were tested and their performances compared to 

determine which performs better for a selected application. 

It is desired to keep the cost of the test apparatus as low as possible. The materials 

to build the test apparatus framework should cost around $100. The cost of the data 

collection equipment and truth source may vary depending upon the level of precision 

desired. For this thesis, the goal was to use data collection equipment and a truth source 

that were readily available in the lab, not necessarily the cheapest solutions. If higher 

accuracy is required (or lower accuracy is acceptable), then it could be achieved by using 

a more (or less) expensive truth source and/or more (or less) expensive data collection 

equipment. 

C. ORGANIZATION 

This thesis is presented in the following chapters: 

An introduction to the basic concepts of inertial navigation and spatial orientation 

is provided in Chapter II, and the components that make up a typical MARG or IMU are 

introduced. MEMS manufacturing technology is discussed with emphasis on the creation 

of MEMS MARGs and inertial navigation systems, and the Microstrain 3DM-GX1 and 

3DM-GX3-25 sensors that were tested in this thesis are introduced. 

In Chapter III, some of the existing and potential future uses of MEMS MARGs 

or IMUs are examined. Military, civilian first responder, and commercial consumer 

applications are all discussed. 

The types of dynamic tests that were desired are introduced in Chapter IV, and the 

reasoning behind the tests and their applications to the real-world uses from the previous 

chapter are discussed. An existing test apparatus from [6] is examined for suitability to 

perform the required tests and found to be inadequate. Reasons for a new test apparatus 

are given and the design considerations of the new apparatus are covered. 
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In Chapter V, the specifics of how the “truth” data and sensor test data were 

collected and processed are presented. Detailed explanations are provided regarding what 

data were collected and also specifics are shown about the LabVIEW virtual instruments 

that were created to interface with the sensors and digital encoder. Finally, an explanation 

of how MATLAB was used to process the raw data into meaningful results is presented, 

and certain limitations that were encountered in the generation of truth data are 

addressed. 

The test methodology and details about the test procedures are given in Chapter 

VI, as well as explanations regarding what data were collected, during which tests, for 

each of the sensors tested. 

In Chapter VII, the specific test results for the 3DM-GX1 and the 3DM-GX3-25 

are presented. The plots in this chapter are compared to the specifications introduced in 

Chapter II to identify whether or not the dynamic accuracy met the manufacturer’s 

specification claims for the desired motions. Where applicable, the sensors’ performances 

are compared. 

Finally, the thesis is concluded in Chapter VIII by showing what was 

accomplished and by identifying areas of future work. The “best” sensor is selected for 

certain applications discussed in Chapter III based upon the test results presented in 

Chapter VII. 
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II. INTRODUCTION TO INERTIAL NAVIGATION SYSTEMS, 
SENSOR ORIENTATION, AND MEMS 

The basics of inertial navigation and orientation are introduced in this chapter to 

provide a framework and common reference for discussion throughout the thesis. MEMS 

manufacturing technology is briefly discussed, and the components that make up a 

MARG sensor are introduced at a very top level. Some of the pros and cons of using 

MEMS sensors for inertial navigation and orientation are discussed. Finally, the two 

sensors tested in this thesis are introduced, complete with specifications. 

The combination of inertial data from orthogonally mounted accelerometers and 

orthogonally mounted gyroscopes to resolve position and orientation makes up an inertial 

navigation system (INS). With their inertial sensors and the ability to provide heading 

information and corrections via the magnetometer, MARG sensors can be used as 

miniature INSs. MARG sensor packages go by other names as well. MicroStrain refers to 

its MARG sensors as attitude reference heading systems (ARHSs). In order to understand 

what needs to be tested in these sensor packages, a basic understanding of the 

components that make one up is required. The building blocks used to make a MEMS 

MARG, INS, or ARHS are all the same types of sensors: accelerometers, gyroscopes, and 

magnetometers. The details of each component are not discussed in exhaustive detail, but 

the type of data gathered from each sensor is introduced and some background is given. 

For the sake of simplicity, this thesis treats INS, MARG sensors, and ARHS 

interchangeably and uses MARG or INS to identify the collection of accelerometers, 

gyroscopes, and magnetometers in a combined system. 

A. INERTIAL NAVIGATION AND REFERENCE FRAMES 

“Where am I?” This seemingly simple question can be incredibly challenging to 

answer. Over the years, methods for determining one’s location on the earth have been 

developed and improved upon. Using position fixing from an outside source, such as the 

stars, ancient seafarers could update their position on a featureless ocean. Alternatively, 

the method of deduced reckoning (also known as “dead” reckoning), was developed 
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wherein the navigator began at a known initial position and orientation and set off in a 

known direction, for a known period of time. Use of simple mathematics and a map or 

common reference frame makes it relatively easy to determine the new location. 

Pedometers, wheel counters, stars, sextants, compasses, and precise clocks have all been 

used as tools for determining position [7]. Inertial navigation is the modern extension of 

dead reckoning navigation techniques, only the distance traveled and orientation of the 

system are calculated using advanced inertial sensors like accelerometers and gyroscopes. 

Inertial navigation systems collect and process data that enable the position and 

orientation of the system to be calculated. MARG sensor packages act like an INS, but 

with an extra set of inputs from a magnetometer, which aids the inertial data processing. 

1. Reference Frames 

If the system is said to have moved “ahead” by two feet, what is the new location? 

Without more information, the answer is not determinable. In order for distances and 

orientations to have meaning, they must be interpreted within the context of a known 

reference frame. In a three-dimensional coordinate system, the reference frame 

establishes three axes about which the system is oriented and moves in relation to. For 

this thesis, two reference frames are important to understand, referred to as the “body” 

and “Earth/Navigation” reference frames. 

a. Body Reference Frame 

The body reference frame is defined with regard to the package that the 

system is contained within, and typically references the three orthogonal axes as x, y, and 

z. Often these axes are perpendicular to the package the sensors are in, or with respect to 

a larger function of the system (for example, a missile that fires forward may have a body 

reference frame such that the x-axis is aligned with the forward direction of flight, the z-

axis is out the “top” of the missile, and the y-axis aligned in a right-hand rule fashion). 

Both sensors tested in this thesis are in rectangular packages with the body 

reference coordinates clearly marked on the outside. Note that the body reference frame 
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may or may not exactly match the actual orientation of the sensors within the package. A 

typical body coordinate reference frame is shown in Figure 1.  

 

Figure 1.   Body Coordinate Reference Frame. 

b. Earth or Navigation Reference Frame 

Most navigation and orientation that is of concern with the MEMS sensors 

under test in this thesis occurs on the earth, and therefore an “Earth” or “Navigation” 

reference frame is often used. In this system, a local level plane is established that is 

orthogonal to the gravitational vector, which points down toward the center of the earth 

(the “down” axis).  On the local level plane, one vector points toward magnetic north and 

the other is aligned orthogonally, pointing east. It is important to emphasize that true 

north and magnetic north are two different directions. True north points toward the axis 

of rotation of the earth whereas magnetic north is aligned with the earth’s magnetic field. 

The Earth/Navigation reference frame is aligned with respect to magnetic north. 

The north, east, down (NED) reference simplifies navigation over or near 

the surface of the earth, and an example is shown in Figure 2. 
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Figure 2.   Earth/Navigation Coordinate Reference Frame. After [7] 

2. Position 

Given a known starting point, the position relative to that starting point may be 

calculated through a series of integrations. The accelerations in all three axes are 

measured and integrated over time to generate a velocity vector. That velocity vector may 

be integrated over time to determine the final position. For example, when starting at rest, 

a change in position of with respect to a single axis in the body reference frame may be 

calculated by 

    
0

t

x xv t a t dt


   (1) 

    
0

t

x xp t v t dt


   (2) 

where  xa t  is the acceleration in the x direction over time,  xv t  is the velocity in the x 

direction over time,  xp t  is the position, and t  is the time the object was moving. 

When using this method to compute position, in order for it to be accurate, the 

acceleration must be known exactly. Any errors in the acceleration may propagate 

through to the velocity, and errors in the velocity will cause errors in position. 
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3. Orientation and Roll, Pitch, and Yaw 

The orientation of the system is often referred to in the aeronautical terms of roll, 

pitch, and yaw. In the body reference frame, roll refers to a rotation about the x-axis, 

pitch refers to a rotation about the y-axis, and yaw refers to the rotation about the z-axis. 

The roll, pitch, and yaw in the body reference frame are shown in Figure 3. 

 

Figure 3.   Body Coordinate Reference Frame Roll, Pitch, and Yaw. 

In the earth/navigation reference frame, roll, pitch, and yaw are defined in a 

manner similar to that for the body reference frame with some slight but important 

differences. Roll is about the body x-axis, with zero degrees of roll defined when the 

body y-axis is parallel to the local reference plane. Pitch is a rotation about the y-axis or 

z-axis (depending upon the roll) and refers to the angle between the x-axis and the local 

reference plane, with zero degrees of pitch established when the x-axis is parallel to the 

local reference frame. Yaw, also referred to as heading in this reference frame, is a 

rotation about the “down” axis and is defined such that zero degrees of yaw/heading 

occurs when the x-axis is pointed along the north axis. The definitions of roll, pitch, and 

yaw in the earth/navigation frame are shown in Figure 4. 
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Figure 4.   Earth/Navigation Coordinate Reference Frame Roll, Pitch, and Yaw. 

B. MEMS TECHNOLOGY 

Micro-electro-mechanical systems are physical machines with dimensions on the 

order of millimeters or less that are built using special techniques. The processes used to 

build MEMS sensors come primarily from the semiconductor industry [8]. Techniques 

such as depositing layers, masking, etching, electrostatic bonding, among others, are used 

to grow and build up small machines that physically are able move about in a measurable 

way and yet are fixed to the base structure. Electromagnetic forces are used to drive 

miniature “motors” that can vibrate masses. Springs and levers can be built and masses 

can be suspended from them. With improvements in semiconductor manufacturing 

techniques has come the ability to machine more and more complex MEMS. 

In Figure 5, the steps to build a tuning fork gyroscope are shown merely to 

highlight the manufacturing process steps. The general technique to build any MEMS 

sensor involves many similar steps, though the exact details required to build modern 

MEMS sensors may be even more advanced and will certainly differ depending upon the 

application. 
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Figure 5.   MEMS Tuning Fork Gyro Micromachining Process. From [8] 

C. ACCELEROMETERS 

Accelerometers are used to measure the acceleration applied to a particular axis. 

Early accelerometers suspended a mass in tension between two springs and measured the 

displacement of the mass with respect to the suspension structure to estimate the force 

being applied. Using Newton’s Second Law of motion, we get 

 F ma  (3) 

where F is the applied force, m is the mass of the suspended proof mass, and a is the 

acceleration that can be estimated [9]. Acceleration is usually shown with units of 

2m sec or “g”, where 21 9.8m secg  . 

Although many other methods exist to measure acceleration using other physical 

phenomena, MEMS accelerometers are based on the observation of the same simple 

principles as early accelerometers, only on a much smaller scale. A proof mass is 

suspended between a set of springs and allowed to move freely in the direction of the axis 

under test. Electrodes that move with the mass are built in between electrodes that are 

fixed to the base structure and the capacitance is measured between the two. In this way, 
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the force may be estimated and Equation (3) solved to provide an estimate of the 

acceleration. A two-axis MEMS accelerometer is shown in Figure 6, with detail shown 

on how the electrodes measure the displacement. 

 

Figure 6.   2-Axis MEMS Accelerometer. From [10] 

D. GYROSCOPES 

Gyroscopes, also referred to as “gyros,” measure the angular rate turning about a 

particular axis. Many people are familiar with the classic children’s toy gyro that is spun 

and remains fixed in space while the structure is free to move about it. Early mechanical 

gyros operated in a similar fashion, and measured how fast the structure moved around a 

particular axis. Full-scale mechanical gyros, fiber optic gyros, ring laser gyros, and 

MEMS gyros all operate using different physical phenomena, but the end result is the 

same: gyros are used to gather angular rate data that are presented in rad sec  or deg/ sec . 

MEMS gyros typically operate using a vibrated mass and measure the forces on 

the structure caused by the Coriolis force as the gyro is rotated [10]. In Figure 7, a typical 

conceptual structure of a MEMS gyro is shown. With the inner structure vibrating, as the 

gyro is rotated about the z-axis the outer structure is moved in the x-direction proportional 

to the Coriolis force, and the displacement is measured using capacitive electrodes. 
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Figure 7.   1-Axis MEMS Gyroscope, Conceptual Structure. From [10] 

E. MAGNETOMETERS 

A magnetometer measures magnetic field vector in units of Gauss. There are 

many different ways to measure magnetic field, but all rely on the basic principles of 

electromagnetism. With regard to navigation, most people are familiar with a compass, 

which acts as a very crude magnetometer that gives direction only (no magnitude). 

Magnetic material floating in a liquid aligns itself with the earth’s magnetic field and thus 

“points” to magnetic north. For navigation, a collection of MEMS magnetometers can be 

used to measure the magnetic vector and then resolve magnetic north based on the 

measured vector. 

Certain methods to create MEMS magnetometers require the use of magnetic 

materials that are not commonly used in conventional semiconductor device fabrication 

and can be complicated to manufacture. Another way to measure the magnetic field that 

has been implemented on MEMS without the use of inherently magnetic material is to 

use the Lorenz force on a current carrying flexure in a magnetic field [11]. A current is 

passed through the central support beam, and then the flexure on the force beam caused 

by the presence of an out of plane magnetic field is measured using capacitive sensing 

plates. An example of this type of MEMS magnetometer is shown in Figure 8. 
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Figure 8.   MEMS Magnetometer. From [11] 

F. ADVANTAGES AND DISADVANTAGES OF MEMS INS AND MARG 
PACKAGES   

The most obvious advantage to using a MEMS INS or MARG sensor package is 

size. With the dimensions of each sensor so small, the overall package required to contain 

triads of accelerometers, gyros, and magnetometers can still be relatively small, 

especially when compared to a traditional INS. This makes a MEMS INS or MARG 

package easily portable, able to fit in small unmanned aerial vehicles and unmanned 

submersible vehicles and even be wearable by a person in an unobtrusive manner, 

opening up a host of new possibilities for applications in inertial navigation and human 

motion tracking. Another major benefit of using MEMS technology is cost. With a single 

manufacturing process that is able to produce hundreds or thousands of sensors at a time, 

the economy of scale becomes significant, and the overall cost of each sensor decreases 

dramatically in comparison to the full size sensors. 

The major concern with a MEMS INS or MARG sensor package is accuracy. The 

forces being measured are very small, and often the distances moved and changes in 

capacitance are very minute, thus the sensors are extremely susceptible to inaccuracies 

and drifting caused by noise, manufacturing defects, different thermal characteristics, and 

more. For example, a MEMS gyro experiences significant drift due to difficulty in 
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measuring absolutely no turn rate because of the way the structure is designed [10]. In 

another example, the integration of a MEMS accelerometer over time to produce velocity 

yielded a significant error [12]. Any use of a MEMS MARG sensor package needs to 

overcome these and other inherent inaccuracies in order to be used for the desired 

applications. 

G. THE 3DM-GX1 

The MicroStrain 3DM-GX1 is an AHRS that uses MEMS sensors to provide high 

fidelity orientation and inertial data via a serial port output. It was selected because it was 

used in previous thesis work and ongoing doctoral research, and therefore, it was 

available for immediate testing. The 3DM-GX1 combines three orthogonal 

accelerometers, three gyros, and three orthogonal magnetometers along with integrated 

onboard electronics to process the sensor data and provide a user requested output. The 

3DM-GX1 is able to provide orientation data through a full 360 degrees of rotation in 

three orthogonal axes, has a 16 bit A-D converter, and utilizes a standard RS-232 serial 

data interface with variable baud rates to output selected data, including the quaternion, 

Euler Angles, attitude and heading, and more [13]. The 3DM-GX1 used for this thesis 

was in the housing provided by MicroStrain, and is shown in Figure 9. 



 18

 

Figure 9.   MicroStrain 3DM-GX1, Top View. 

Utilization of the RS-232 serial port communication makes it possible to use 

either polled or continuous communication modes to interface with the 3DM-GX1. In 

polled communication mode, the 3DM-GX1 only transmits data when it is commanded to 

transmit. This requires the host to transmit a certain command, wait for the 3DM -GX1 to 

process it, and the 3DM-GX1 sends the output when it is finished processing. The 

alternate communication method is to use the continuous communications protocol. The 

desired command can be set and then the 3DM-GX1 continually outputs data to the serial 

port, updating the information in the data stream as soon as a new data set is processed. 

This requires the host computer to buffer large amounts of data since the same 

information is sent repeatedly. Both communication methods were attempted for this 

thesis and are discussed in more detail in Chapter V. The specifics about how to set 

polled or continuous modes and how to send commands and to translate the data, as well 

as the specific commands available, are all expanded in detail in [14]. 

The detailed specifications for the 3DM-GX1 are listed in Table 1. Note that the 

dynamic accuracy, specified by “cyclic” test conditions, was listed as  2 degrees, though 

nothing is elaborated on regarding specifics about what constituted “cyclic” motion. 
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Table 1.   3DM-GX1 Specifications. From [13] 

Orientation range 360° all axes (orientation matrix, quaternion) 
(pitch, roll, yaw) ± 90°, ± 180°,± 180° (Euler angles) 
Sensor range  gyros: ± 300°/sec FS 
  accelerometers: ± 5 g FS 
  magnetometers: ± 1.2 Gauss FS 
A/D resolution  16 bits 
Accelerometer nonlinearity 0.20% 
Accelerometer bias stability* 0.010 g 
Gyro nonlinearity 0.20% 
Gyro bias stability* 0.7°/sec 
Magnetometer nonlinearity 0.40% 
Magnetometer bias stability* 0.010 Gauss 
Orientation resolution  <0.1° minimum 
Repeatability  0.20° 
Accuracy  ± 0.5° typical for static test conditions 
  ± 2.0° typical for dynamic (cyclic) test conditions 
  & for arbitrary orientation angles 
Output modes  matrix, quaternion, Euler angles, & nine scaled 
  sensors with temperature 
Digital outputs  serial RS-232 & RS-485 optional with software 
  programming 
Analog output option  4 channel, 0–5 volts full scale programmable 
  analog outputs 
Digital output rates  100 Hz for Euler, Matrix, Quaternion 
  350 Hz for nine orthogonal sensors only 
Serial data rate  19.2/38.4/115.2 kbaud, software programmable 
Supply voltage  5.2 Vdc minimum, 12 Vdc maximum 
Supply current  65 mA 
Connectors  one keyed LEMO, two for RS-485 option 
Operating temp.  -40 to +70°C with enclosure 
  -40 to +85°C without enclosure 
Enclosure (w/tabs)  64 mm x 90 mm x 25 mm 
Weight (grams)  75 grams with enclosure, 30 grams without 
  enclosure 
Shock limit  1000 g (unpowered), 500g (powered) 

*Accuracy and stability specifications obtained over operating temperatures of -40 to 70°C with known sine and 
step inputs, including angular rates of ± 300° per second. 

 



 20

H. THE 3DM-GX3-25 

The MicroStrain 3DM-GX3-25, hereafter referred to as the 3DM-GX3, is the 

third generation ARHS from MicroStrain. It is smaller, lighter, and has faster processing 

speeds than the 3DM-GX1, though it provides essentially much of the same functionality, 

as well as some enhancements. It uses tri-axially mounted MEMS accelerometers, gyros, 

and magnetometers, as well as other internal sensors and a sensor fusion algorithm to 

provide orientation data in all three dimensions [15]. Similar data outputs were available 

as the 3DM-GX1, but the 3DM-GX3 did not provide the quaternion. Rather, the 

orientation matrix can be polled, or the orientation data can simply be output using the 

Euler angles. The 3DM-GX3 communicated via either RS-232 or USB. For this thesis, 

the RS-232 communication method was used. The 3DM-GX3 used for this thesis was in 

the enclosure provided by MicroStrain and is shown in Figure 10. 

 

Figure 10.   MicroStrain 3DM-GX3, Top View. 

Similar to the 3DM-GX1, the 3DM-GX3 had a continuous mode of 

communication and a polled, or “active” mode of communication. Only the active mode 

was used for this thesis since the data rate achievable became limited by the data 

collection equipment and not the 3DM-GX3 sensor. In an improvement over the 3DM-

GX1, the data output from the 3DM-GX3 were primarily in IEEE 754 floating point 
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(32 bit) and did not require much post processing to recover the orientation angles. The 

specifics about how to send commands, as well as which specific commands were 

available, are all expanded in detail in [16]. 

The detailed specifications for the 3DM-GX3 are listed in Table 2. Note that 

again the dynamic accuracy was specified by “cyclic” test conditions and cited as  2 

degrees, though nothing is elaborated regarding specifics about what constituted “cyclic” 

motion. Also note that although there appear to have been improvements in the accuracy 

and stability of the sensors, the overall static and dynamic accuracy specifications were 

not improved over the 3DM-GX1. 

Table 2.   3DM-GX3 Specifications. From [15] 

Orientation range  360° about all axes 
Accelerometer range  ± 5 g standard 
  ± 2 g, ± 18 g, and ± 50 g also available 
Accelerometer bias stability  ± 0.005 g for ± 5 g range 
  ± 0.003 g for ± 2 g range 
  ± 0.010 g for ± 18 g range 
  ± 0.050 g for ± 50 g range 
Accelerometer nonlinearity  0.20% 
Gyro range  ± 300°/sec standard, ± 1200°/sec, ± 600°/sec,  
  ±150°/sec, ± 75°/sec also available 
Gyro bias stability  ± 0.2°/sec for ± 300°/sec 
Gyro nonlinearity  0.20% 
Magnetometer range  ± 2.5 Gauss 
Magnetometer nonlinearity  0.40% 
Magnetometer bias stability 0.01 Gauss 
A/D resolution  16 bits (SAR) (oversampled to 17 bits) 
Orientation Accuracy  ± 0.5° typical for static test conditions 
  ± 2.0° typical for dynamic (cyclic) test conditions 
  & for arbitrary orientation angles 
Orientation resolution  <0.1° 
Repeatability  0.2° 
Output modes  acceleration, angular rate and magnetic field 
  deltaAngle and deltaVelocity 
  Euler angles 
  rotation matrix 
Interface options standard:  USB 2.0 or RS232 
  OEM: USB 2.0 / TTL serial (3.3 volts) 
Data rate  1 Hz to 1,000 Hz 
Filtering  sensors sampled at 30 kHz, digitally filtered 
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  (user adjustable ) and scaled into physical units; 
  coning and sculling integrals computed at 
  1 kHz. 
Baud rate  115,200 baud to 921,600 baud 
Supply voltage standard: 4.4 to 6 volts [up to 15 volts operation 
  possible at limited temp range or low duty cycle] 
  OEM: 3.2 to 5.5 volts 
Power consumption  80 mA @ 5 volts with USB 
Connectors  micro-DB9, 
  OEM: Samtec FTSH-105-01-F-D-K 
Operating temp.  -40 °C to +75 °C (consult factory for higher 
  temperature operation) 
Dimensions  44 mm x 25 mm x 11 mm - excluding mounting 
  tabs, width across tabs 37 mm, 
  OEM: 38 mm x 24 mm x 12 mm 
Weight  18 grams RS-232 and USB, 11.5 grams OEM 
Shock limit  1000 g (unpowered), 500g (powered) 

*Accuracy and stability specifications obtained over operating temperatures of -40 to 70°C with known sine and 
step inputs, including angular rates of ± 300° per second. 

 

I. SUMMARY 

The basics of inertial navigation and body orientation were discussed in this 

chapter, and the building blocks of MEMS MARG sensors were introduced, providing a 

quick overview of the type of data that each sensor can measure and briefly explaining 

how the sensor measures it. The two reference frames used in this thesis were introduced, 

and details about the pros and cons of MEMS sensors were provided. Finally, the specific 

sensors that would be tested in this thesis, the MicroStrain 3DM-GX1 and 3DM-GX3, 

were introduced and the manufacturer’s specifications were listed. 

In the next chapter, some of the potential applications of MEMS MARG sensor 

technology are introduced with emphasis on personal navigation and human motion 

tracking. In addition, current commercial applications of MEMS inertial and magnetic 

sensors are also mentioned to familiarize the reader with the capabilities of MEMS 

sensors. 
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III. APPLICATIONS OF MEMS MARG SENSOR PACKAGES 

In this chapter, a few of the existing and potential future applications of MEMS 

MARG sensor packages are introduced. Emphasis is given to military and first responder 

applications, though some commercial applications are also given to show where MEMS 

sensors of this sort are in use that may be familiar to the reader. 

A. PERSONAL NAVIGATION 

The concept of having a system that tracks a person’s location and makes that 

location readily known to the user has been around for a number of years. The 

establishment of the USAF Global Positioning System (GPS) satellite constellation in 

1993 enabled military and civilian users alike to be able to instantly and accurately track 

their locations with varying levels of accuracy [7]. The basic functionality works by 

receiving a signal from a minimum of four different satellites and then resolving the 

receiver position by solving four equations simultaneously for x, y, and z position and a 

clock delta parameter. Different satellites in view may be used to solve for the user’s 

position with differing levels of accuracy. 

When access to the GPS signal is denied, either due to enemy jamming or due to 

masking the receiver (as when going indoors), the ability to use GPS to navigate is lost. 

Alternative solutions exist for navigating indoors, but many require the use of external 

equipment or a-priori knowledge of the indoor environment via a map or other means. A 

cleaner solution that requires no external infrastructure would be to have a personal 

navigation system attached to the body to track location. 

In their work on self-contained position tracking of human movement using small 

inertial/magnetic sensor modules, Xiaoping Yun et al. showed that it was possible to use 

a MARG sensor package to accurately track a human position through walking, running, 

and side stepping [12]. Inherent errors of the MEMS sensors were removed through 

clever filtering and correction of the sensors’ drift using zero foot velocity updates. 
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In her thesis, “A position tracking system using MARG sensors,” Miryung Um 

[17] built on previous work to develop a position tracking system using MARG sensors. 

A MARG was firmly attached to the top part of a shoe near the ankle, and using 

knowledge of the human gait cycle and an algorithm that zeroed out velocity errors when 

the foot was not actively swinging, a rudimentary personal INS was developed. The work 

demonstrated the ability to track position with reasonable accuracy while walking a 

straight line and climbing stairs. 

There are a number of potential military applications for personal navigation. 

When combined with GPS receiver, a personal INS would add a layer of protection 

against jamming or spoofing of the GPS. The INS data could be combined with the GPS 

data using a Kalman filter, as many aircraft systems do, providing a reliable and 

continuous means of navigation with and without GPS. It would also provide an 

independent source that may alert the user to the presence of attempted spoofing or other 

electronic attack. Such an integrated system would provide the ability to navigate 

electronically in areas where GPS reception is poor, such as in canyons or inside 

buildings. Further, this personal data could be integrated with a transmitter allowing a 

battlefield commander to know the exact location of all troops, even in an urban 

environment when troops are scattered through buildings. 

 The civilian first responder applications are similar to military applications. A 

firefighter with a personal navigation system could have a map of a building with his or 

her current location displayed on it, allowing rapid movement through large, complex 

smoke-filled buildings. Such a map and display could even be integrated into a helmet 

mounted display, further enhancing its utility. Also, like the military application, a 

personal INS could be combined with a transmitter so that those in command of a large 

scale rescue event, such as that on September 11, 2001, would know precisely where all 

of the rescue personnel were at any given time. This would enable more efficient and 

safer direction of resources. 
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B. IMMERSIVE VIRTUAL REALITY TRAINING 

The United States Military is one of the best-trained militaries on the planet, but 

that training comes at a cost. In FY09 alone, nearly $1.1 billion was allocated for active 

duty Army and Marine Corps recruit and specialized skill training [18]. Although the Air 

Force also spends a significant amount on training, the use of simulators has provided a 

way to cut the cost of training pilots. The A-10, F-22, and F-35 all are single-seat fighters 

with no dual-seat instructional flying variants. Prior flight training and simulators are 

enough to sufficiently bring pilots up to speed so that their first flight in one of these 

aircraft is a solo flight, but training in a cockpit is different than combat training on the 

ground. 

Many different simulators have been developed in an attempt to address training 

troops on the ground. They range from the very simple, essentially video games that run 

on laptop computers [19], to sophisticated systems using virtual reality goggles and 

omni-directional treadmills. These systems may provide realistic looking environments, 

but they do not provide realistic training. One reason flight simulators work for pilots is 

that the pilots are able to manipulate the same controls and interact with the environment 

in the same way as they would in a real aircraft. Current simulations for troops on the 

ground do not provide this fidelity of real-world motion combined with simulation. 

One solution is immersive virtual reality (VR) training. In immersive VR, a user 

can digitally enter a virtual world through the use of a portable viewer and an integrated 

motion tracking system that is able to track the user and “place” them in the simulation. 

To do this requires accurate human motion tracking. Motion capture technology popular 

in the film industry relies on external cameras and wearable reference nodes, which 

requires a significant infrastructure. In [20], Eric Bachmann demonstrated the feasibility 

of creating a “source-less” human motion tracking system using MEMS MARG sensors 

placed at key locations on the body. A filtering algorithm was developed, and the ability 

to manipulate and control a virtual human body model in near real time was shown. The 

self-contained sensor systems have an advantage over those that require external cameras 

or sensors to track since external cameras or sensors could be masked by common user 
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motions. In addition, they rely on extra infrastructure and are limited to a confined space. 

Utilization of MEMS MARG sensors on the hands, feet, shoulders, helmet, rifle, and 

other locations allows position and orientation data to be fed into a portable central 

processor running the simulation, and conceivably there would be no spatial or masking 

limitations. Those in training could go through many of the same motions they would in 

real life, enhancing the utility and lowering the cost of training. Use of this technology 

could make it possible to create virtual environments, and have troops “walk the streets” 

of a city or town in which they were going to be conducting operations, prior to even 

leaving their home base. 

C. COMMERCIAL APPLICATIONS 

MEMS sensors are working their way into the mainstream, and many popular 

consumer electronics utilize some or all of the MEMS sensors that make up MARG 

packages and MEMS INSs. These applications are presented here to provide the reader 

with familiar and tangible references regarding what the sensors that make up a MEMS 

MARG are capable of doing. 

1. Nintendo Wii 

First introduced in 2006, the Nintendo Wii dramatically changed the way users 

interact with a gaming system. The use of a remote that detected the motion of the users 

enabled a new level of interactive gaming. Players used a remote with normal video game 

buttons but also with a set of sensors that translated the users’ motions into virtual 

actions. 

The Wii remote contains a three-axis MEMS accelerometer built by Analog 

Devices [21]. These sensors allow the remote to detect movement and identify motions 

like swinging, while the game software translates these actions into on-screen game play. 

Games like tennis, golf, bowling, fishing and more are controlled by moving the remote 

in a similar fashion as the real-world activities. 

In 2009, Nintendo released the Wii MotionPlus attachment, which Nintendo 

advertised “brings every twist of the wrist or turn of the body to life” [22]. The additional 
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sensor pack integrated three MEMS gyroscopes, which enabled the remote to more 

accurately determine its orientation. This translated into more precision when replicating 

complex natural motions. 

With tri-axial accelerometers and gyros, the Wii remote with MotionPlus is a 

state-of-the-art commercial use of MEMS sensor technology. 

2. Apple iPhone 

Another revolutionary piece of technology is Apple’s iPhone, originally released 

in 2007. The iPhone pioneered or made popular many new features of so called “smart 

phones,” and one of the subtle enabling technologies used in those new features was the 

integration of a three-axis MEMS accelerometer. 

Most of the uses of the accelerometers in the iPhone rely on the acceleration due 

to the earth’s gravity. Programs and applications use the three-dimensional gravity vector 

detected by the sensors to identify the orientation of the iPhone. This enables switching 

between portrait and landscape mode and also provides an input for many third-party 

developed games and applications, such as a remake of the children’s game “Labyrinth” 

or an electronic carpentry level. Newer iPhone software also enabled a “shake” input, 

where the accelerometers detect a certain threshold of shaking in a period of time, which 

can be used to shuffle music when using the music features, among many other uses [23]. 

The latest version of the iPhone, the 3Gs, introduced a magnetometer as another 

embedded sensor. A digital compass application allows users to find magnetic north and 

their current heading (yaw in the earth reference frame). Both the magnetometer and the 

accelerometers function in the background of the iPhone, yet they are important and 

integral parts to the technology. 

D. SUMMARY 

In this chapter, some of the current applications of MEMS MARG sensor 

technology in both personal navigation and human motion tracking were presented. 
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Potential applications for future military and civilian use were introduced. Finally, some 

common commercial uses of MEMS sensors were presented to connect the reader with 

the capability of MEMS sensors. 

In the next chapter, the testing to be accomplished in this thesis is developed and 

the test apparatus that was designed, and ultimately built, is presented. The chapter begins 

with a discussion about the types of dynamic tests to be simulated then a previous test 

apparatus is examined before the requirements and specifications for the final new test 

apparatus are introduced. 
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IV. TEST DESIGN AND APPARATUS 

The types of tests that will be accomplished are discussed in this chapter. The 

rationales for the tests are provided and a previous test apparatus is examined for 

suitability. New apparatus design considerations are put forward and the final design is 

presented. 

A. SWINGING TESTS 

Early implementations of personal navigation systems, such as [12] and [17], 

have placed the MEMS MARG sensor package on the foot near the ankle. The 

accelerations of the foot were measured throughout each step and were used to calculate 

the distance travelled. The motion of walking is described by the human gait cycle, which 

has a stance phase and a swing phase. In the swing phase, the leg is moving and swinging 

through the air to the next position. In the stance phase, the foot is stationary while the 

other foot is moving. In the referenced examples, the sensor package attached to the foot 

moved during the swing phase and, therefore, the dynamic motion that needs to be tested 

for personal navigation applications should mimic the leg swinging.  

In human motion tracking applications for immersive virtual reality, as in [20], 

sensors may be placed on the wrists, elbows, shoulders, head, and elsewhere to track the 

orientation of the individual. When moving about, the sensors can expect to experience 

some periodic motion, as when walking, but must also expect to experience somewhat 

random motions since a person’s orientation is not fully predictable. The ability to have a 

quasi-random motion test is needed in order to test appropriately for human motions. 

In very simple terms, many of the dynamic motions, both in personal navigation 

and human motion tracking for immersive VR training, may be approximated by 

swinging around a pivot point. When walking, the knee acts as a pivot point, and the foot 

with the sensor attached swings freely below. When pointing an arm or a rifle, the elbow 

or shoulder act as the pivot and the arm or rifle may swing horizontally about that point. 

These descriptions do not cover the two- or three-dimensional translation that also occurs 
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in these motions, but to a first-order approximation, walking or swinging an arm may be 

thought of as a pendulum swinging about a point. 

Since swinging about a fixed point mimics the dynamic motions found in personal 

navigation and immersive VR training, swinging tests were the primary focus of this 

thesis. 

B. SUDDEN STOPS 

Walking is a continuous set of transitions from swinging to not moving and then 

back to swinging again. The performance of the MEMS INS is important through all 

phases. In [12], the velocity was zeroed out once it was identified that the foot was no 

longer moving. Therefore, the accuracy and speed of the transition from moving to being 

stopped is very important. 

In addition to testing the sensors in a freely swinging motion, tests were 

developed so that the MEMS INS was swung once and then came to a sudden stop. The 

speed at which the sensor was stopped was intended to mimic that of a foot hitting the 

ground and transitioning from the swing phase to the stance phase of the gait cycle. 

C. PREVIOUS TEST APPARATUS 

In [6], ENS Shaver built a simple test apparatus that was a pendulum with the 

sensor unit attached to one end of a wooden dowel and the pivot point connected to an 

optical absolute encoder. A picture of the apparatus is shown in Figure 11. 
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Figure 11.   Previous Test Apparatus Used in ENS Shaver’s Thesis Work. 

The apparatus shown in Figure 11 is able to test the sensors in various orientations 

through a repeatable swinging motion. The length of the pendulum is adjustable, which 

allows different moment arms to be tested simulating shorter or longer arms or legs. Test 

setup is quick, and overall the cost of the test apparatus was low, with the exception of 

the encoder. 

D. PROBLEMS WITH PREVIOUS TEST APPARATUS 

Although it worked for initial tests, there were many things that made the old test 

apparatus unsuitable for the testing in this thesis. The major problem was rigidity. The 

old apparatus’ pendulum shaft was a 1/4 inch wooden dowel that was attached to the 

encoder using a series of bearings and a k-coupling. There was significant lateral 

translation in the system, especially when the pendulum was lengthened. The pendulum 

was susceptible to wobbling slightly, a motion that was not captured by the encoder. 

Since the desire was to have repeatable motion that was instrumented by an outside 
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source, this wobbling was unacceptable. Further, the lack of rigidity posed more 

problems when the apparatus was attempted to be operated with the pendulum horizontal 

to the ground, as the pendulum bowed significantly. 

Another problem with the previous apparatus was developing a way for it to stop 

quickly and precisely. Manually catching the pendulum identified problems that would be 

encountered if the pendulum were suddenly stopped. Since there was so much free-play 

in the system, when the pendulum was stopped suddenly, the entire pendulum and 

connection unit tended to wobble and shake while dissipating the energy. None of these 

motions were accurately captured by the single encoder. 

The other problems encountered were minor, but needed to be addressed. There 

was no way to start tests in the same place each time, making it difficult to obtain 

repeatable results. Also, the existing unit was not designed to work well with the 

pendulum horizontal to the ground. Finally, there was no way to test two sensors on the 

same test apparatus. 

E. NEW APPARATUS DESIGN CONSIDERATIONS 

Given that the existing apparatus would not work, a new test apparatus was 

designed, using the old apparatus as a starting point for the general concept but 

attempting to address the problems encountered as well as enhance its utility. The 

following considerations were included in the design. 

1. Simple but Sturdy 

Since a lack of rigidity was one of the major problems with the old apparatus, the 

new apparatus was required to be sturdy. The frame needed to be heavy and not 

susceptible to shaking, and the pendulum needed to be solid and not prone to flexion. The 

shaft that the pendulum would rotate about needed to be thicker and attached rigidly 

using mount bearings to avoid the wobbling problems encountered with the old 

apparatus.  
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Although a sturdy construction was required, the apparatus needed to be simple to 

build, without any special tools. A few common power saws and a simple power drill 

were the only “special” tools allowed. Additionally, the method of construction needed to 

be basic, with simple joints and connections rather than using fancy carpentry to fasten 

the unit together.  

2. Low-Cost Framework 

An effort was made to keep the construction of the test apparatus as cheap as 

possible without sacrificing utility. Simple construction materials that could be found at 

any hardware store and lumberyard were used as much as possible. Cheaper pressed steel 

flange bearings were chosen, as opposed to stainless steel bearings, because they 

provided the same function at fraction of the cost. The low cost (near $100) makes it 

easier for others on a tight budget to build a similar test apparatus if so desired. Note that 

the encoder had already been purchased, and it was not included as part of the cost of the 

test apparatus.  

3. Low Magnetic Field 

Since the MARG sensors have a magnetometer that plays a crucial role when 

translating the body reference frame to the navigation reference frame, it was important 

that the test apparatus not significantly distort or change the magnetic field measured by 

the sensors. The test apparatus would be operated in an indoor environment similar to 

that expected that a personal INS would operate in, with metal tables nearby and 

computers running. However, since in practice a personal INS could be made and 

attached to the body without adding significant extra magnetic field, it was important to 

minimize the magnetic signature of the test apparatus as much as possible. 

Since a metal structure was ruled out, both wood and PVC plastic were examined 

as potentially suitable solutions. However, PVC did not meet the rigidity requirements 

discussed above and, therefore, a wooden structure was chosen. Also, in selecting the 

bearings, an inexpensive option was to use cast iron based flange bearings. However, 

these were not selected because of the potential magnetic field change caused by the cast 
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iron. Instead, pressed steel were selected since the cost increase was minimal and the 

difference in magnetic interference potentially significant. 

4. Sudden Stop Capability 

The new apparatus was designed for a free-swinging motion, similar to the old 

apparatus. However, it was desired to have the capability to add an attachment that 

brought the pendulum to a rapid and predictable sudden stop after one cycle of a swing, 

similar to the swing-to-stance phase of the gait cycle. The attachment needed to be firm 

enough to bring the pendulum to a stop without too much wobbling, yet temporary so that 

it could be added and removed quickly and easily, depending upon the testing desired. 

5. Multiple Orientations 

Since mimicking the walking motion required the pendulum to be oriented 

vertically, but mimicking a pointing arm motion required the pendulum to be oriented 

horizontally, the ability to easily change the orientation of the pendulum, rather than 

developing two separate test apparatuses, was required. 

6. Repeatability 

The previous test apparatus provided no way to ensure that any two tests started 

or finished at approximately the same angle. Although the angle of the pendulum would 

be measured by the encoder, it was desired to have an independent way to ensure tests 

could easily be conducted in a repeatable manner. 

F. NEW APPARATUS DESIGN AND COST 

The final test apparatus was designed to be built primarily out of standard 2 x 4 

inch boards. The base would be 1/4 inch Masonite board, that did not serve structural 

purposes as much as it was something common for the 2 x 4s to be attached to. The 

pendulum would be a 2 x 4, and it could be changed out with varying lengths of 2 x 4s if 
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needed. The shaft of rotation was a 1-inch wooden dowel, and it was secured to the 

pendulum using wood screws. Three pressed steel flange mount bearings were used to 

secure the shaft to the test apparatus.  

The schematics of the new test apparatus from the front, top, and side views are 

shown in Figures 12, 13, and 14, respectively. The drawings are not to scale, but the 

exact dimensions corresponding to the pieces labeled in the three views are found in 

Table 3. 

 

Figure 12.   Front View Schematic of the New Test Apparatus.  
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Figure 13.   Top View Schematic of the New Test Apparatus. 

 

Figure 14.   Side View Schematic of the New Test Apparatus. 
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The parts needed to build the new test apparatus are contained in Table 3. Note 

that these are already the “cut” pieces, not necessarily the parts that were purchased. 

Also, these are the actual dimensions used (a standard 2 x 4 actually measures 1.75 in x 

3.5 in). 

Table 3.   New Test Apparatus Parts Breakdown.  

Use Dimensions Quantity Label in 3-Views 

Base legs for upper table 1.75 in x 3.5 in x 8 in 4 A 

Outer legs 1.75 in x 3.5 in x 11.75 in 4 B 

Bottom flat vertical brace 1.75 in x 3.5 in x 17.25 in 2 C 

Cross braces 1.75 in x 3.5 in x 18 in 2 D 

Pendulum 1.75 in x 3.5 in x 24 in 1 E 

Cantilevers 1.75 in x 3.5 in x 32 in 2 F 

Base 0.25 in x 24 in x 24 in 1 G 

Top 0.25 in x 21 in x 22.5 in 1 H 

Angle Reference Board 0.25 in x 21 in x 12 in 1 I 

Reference Board Mounts 1.75 in x 3.5 in x 3.5 in 2 J 

Shaft/Pendulum 
Joining Piece 

1.75 in x 3.5 in x 4 in 
1 K 

1 inch Wooden Dowell 1 in x 18 in 1 L 

Flange Mount Bearings 1 in inner diameter 3 M 

Sensor Mounting Board 0.25 in x 6 in x 7 in 1 N 

K-Coupling 0.375 in 1 -- 

K-Coupling 0.25 in 1 -- 

PVC Pipe Cap 3/4 in schedule 40 1 -- 

Bolt 0.375 in 1 -- 

Woodscrews 3 in 1 box -- 

Woodscrews 1.625 in 1 box -- 

Epoxy -- 1 bottle -- 

Wood glue -- 1 bottle -- 

 

A scale paper-model mockup was built to identify problems early, before parts 

were already cut, and to show exactly how everything would fit together. The model 
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helped identify additional areas that needed structural support and provided an easy 

template to work from when building the final product. A picture of the scale model is 

shown in Figure 15. 

 

Figure 15.   Paper Model of Test Apparatus. 

In order to attach the wooden shaft to the encoder, the diameter of the rotating 

shaft needed to be coupled down from 1 inch to 1/4 inch in diameter. This was 

accomplished using a 3/4 inch PVC pipe cap with a 3/8 inch hole drilled in the center. A 

3/8 inch bolt had the threads cut off with a hacksaw and was fitted through the hole and 

fixed in place using Plastic Welder Epoxy. The 3/8 inch bolt was connected via a k-

coupling to another 3/8 inch mount bearing, which in turn was connected to a 1/4 inch 

shaft and 1/4 inch k-coupling that connected to the encoder. The purpose of the k-

couplings was to negate any alignment errors, since the couplings allowed some flexion 

but kept the shaft turning at the same rate. The cap with 3/8 inch bolt is shown in Figure 

16, and the entire shaft assembly is shown in Figure 17. 
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Figure 16.   1 inch to 3/8 inch Shaft Coupling. 

 

Figure 17.   Completed Shaft to Encoder Coupling.  

When assembling the test apparatus, the 1 5/8 inch screws were used wherever the 

2 x 4s were attached to the Masonite base or top. Whenever two 2 x 4s were being 

attached to one another, a 3-inch screw was used. Wood glue was used to provide added 

stability and rigidity on some of the base joints. 

A board was mounted directly next to the pendulum, and the path of the 

pendulum was traced out on the face of the board. To enable repeatable tests Low, 

Medium, and High marks were made at the same angle on both sides of the pendulum’s 

direction of travel. 

A 6-inch by 7-inch board was cut from the Masonite and was drilled so that both 

sensors could be attached at the same time, even though only one would be connected to 
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the data collection equipment at a time. This was done so that each sensor would 

experience the same motion in repeated tests since the mass on the pendulum’s end was 

unchanging. The sensor board was screwed in to the bottom of the pendulum and could 

be fixed in two different orientations, depending upon the desired data being collected. A 

drop of wood glue was used each time the board was fixed to the base of the pendulum to 

provide added strength. A close-up of this board, with both sensors attached, is shown in 

Figure 18. 

 

Figure 18.   Sensors on Mounting Board, Attached to Pendulum. 

Originally, the two MicroStrain sensors were fixed to the board using small metal 

screws and nuts, but concern arose over potential interference with the magnetic field by 

having metal so close to the sensors. Two sets of trial data were collected, one using only 

metal fasteners on the board and the other using only plastic fasteners. The tests were 

inconclusive, with no clear interference caused by the metal fasteners, but the plastic 

fasteners performed well enough that they were used rather than risking skewing the data. 

Plastic screws and nuts from the lab were used to mount the 3DM-GX1 to the board. The 

3DM-GX3 enclosure’s mounting holes were too small for any plastic screws available in 

the lab, so zip-ties were used along with simple masking tape to hold it in place.  

The final test apparatus is shown in Figure 19, set up in the “horizontal” test 

orientation, and the final test apparatus is shown in the “vertical” test orientation in 

Figure 20. Both figures show the “free-swinging” test setup described in Chapter VI.  
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Figure 19.   Final Test Apparatus, Horizontal Test Orientation. 

 

Figure 20.   Final Test Apparatus, Vertical Test Orientation. 
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1. Apparatus Design With Impact Attachment 

In order to run the tests that included an impact, the test apparatus had to be 

modified. A cushioned impact arm was fixed to the test apparatus, as shown in Figure 21 

with the additions shown in red. An old running shoe was used to provide the cushion on 

the 2 x 4 impact arm, and the arm was fixed to the test apparatus in two places using 

woodscrews. The picture of the test apparatus configured to collect the tests with impact 

is shown in Figure 22. 

 

 

Figure 21.   Top and Front View Drawings of Test Apparatus With Impact Board. 
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Figure 22.   Test Apparatus Configured With Impact Board. 

2. New Apparatus Cost 

The approximate final costs of the materials used in the new test apparatus are 

shown in Table 4. Numbers have been rounded to the nearest $0.50 increment if the 

item’s unit cost was more than $1, and certain materials like the glue and woodscrews 

screws were included even though the test apparatus did not require the full quantity that 

was purchased. A miscellaneous hardware amount was included to cover small hardware 

items used from the lab such as zip-ties and mounting screws. Overall, the cost 

breakdown shows that the goal of making an affordable new test apparatus costing 

around $100.00 was met. 
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Table 4.   New Test Apparatus Cost Breakdown. 

Item Qty 
Approximate 

Cost (ea) 
Total 

2 in x 4in x 8 ft 4 $2.50  $10.00 
4ft x 8ft Masonite Board 1 $10.00 $10.00 

1in Wooden Dowell 1 $3.50 $3.50 
3/8 in K-Coupling 1 $25.00 $25.00 
1/4 in K-Coupling 1 $20.00 $20.00 

Flange Mount Bearing 3 $10.50 $31.50 
PVC Pipe Cap 1 $0.80 $0.80 

3/8 in Bolt 1 $0.80 $0.80 
Epoxy 1 $5.00 $5.00 

Box of Woodscrews 1 $6.00 $6.00 
Wood Glue 1 $3.00 $3.00 

Misc. Hardware 1 $5.00 $5.00 

  Total Cost: $120.60 

 

G. SUMMARY 

In this chapter, the rationale and design considerations for a new test apparatus 

was presented. The detailed specifications for the apparatus were presented and the 

completed test apparatus was shown. Finally, the approximate costs of the materials 

making up the test apparatus were provided. 

In the next chapter, how the data collection challenges were met is discussed. The 

hardware used to interface with all of the sensors and data collection equipment is 

introduced and the software that was used to collect and store the data is presented. Step 

by step instructions are provided for how to collect and save data. Finally, a graphical 

user interface is shown that enabled simple data processing once a test had been 

performed. 
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V. DATA COLLECTION 

The methods used to acquire data for this project are presented in this chapter. 

Specific hardware and software are discussed and details are provided that show exactly 

how the different interfaces were set up. The reasons behind the choice of the data 

collection system architecture are also provided. Truth data generation from the encoder 

is discussed, and issues related to data collection, such as timing, are presented in detail. 

Finally, the post-test data analysis software using a MATLAB graphical user interface 

(GUI) is shown. 

A. ENCODER 

The Gurley Precision Instruments 16-bit absolute encoder, model A58, was used 

for this thesis. The specific part number was A58S16MGTT05SAT39Q04. It is the same 

encoder that was used in [6]. Since it used 16-bits to encode its angular position, the 

resolution was 

 
16

1 full rotation 360 deg
0.00549deg count .

2  counts 1 full rotation
     
  

 (4) 

The 16-bit word with the encoder position was broken up into two bytes. The 

encoder could output one of two data bytes at a time, depending upon what was 

prompted. When prompted for the least significant byte by setting the output enable one 

(OE1) pin low, the 8 data pins D0 – D7 represented the position LSB if the data available 

(DA) pin was reporting high. Similarly, by setting the output enable 2 (OE2) pin low, the 

encoder provided the most significant byte on D0 – D7 when it was reporting data 

available. In Table 5, the pin-out of the A58 encoder is shown, while in Figure 23 a 

graphical representation of the timing diagram for one sample of data requested is shown. 
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Table 5.   Encoder Pin-Out. From [24] 

Electrical 
Signal Pin Color 

D0 1 yellow 
D1 2 brown 
D2 3 green 
D3 4 yellow-white 
D4 5 blue 
D5 6 white 
D6 7 violet 
D7 8 gray 
DA 9 white-green 

 (data availability)
OE1 10 red-blue 

(output enable 1)

OE2 11 pink 
(output enable 2)

  12 yellow-brown 
0 V 13 black 
+V 14 red 

CASE 15 shield 
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Figure 23.   A58 Encoder Timing Diagram. After [24] 

A special connector was made in order to connect the encoder to the LabVIEW 

data collection equipment. The connector connected pins D0 – D7, DA, OE1, and OE2 to 

corresponding pins on an old parallel port cable that was connected to the data collection 

equipment. The connector also connected a +5V DC power supply and ground to pins 14 

and 13, respectively. Pin 12 was not defined in the documentation and was left 

unconnected. 



 48

B. LABVIEW 

National Instruments’ LabVIEW 2009 was chosen to be the main data gathering 

software used for this thesis. LabVIEW was chosen because it could be used to easily 

create virtual instruments (VIs) that interface between real-world data gathering systems 

and a computer interface for data processing. LabVIEW used a block diagram 

programming method as opposed to the more familiar text based programming 

languages, which allowed for rapid development of data collection programs. 

Additionally, some VIs were already available to serve as templates for communicating 

with the encoder and the MicroStrain sensors. 

LabVIEW was used primarily for data gathering and storage and, therefore, very 

little effort was expended making the “front panels” show anything more than indications 

of proper functionality. The bulk of the programming effort went into creating 

streamlined and efficient block diagrams that collected and stored data. For data 

manipulation and presentation MATLAB R2008b was used, as described in detail in a 

later section. 

Initial tests using LabVIEW were run with the 3DM-GX1 and encoder on the old 

apparatus from [6] using existing VIs from previous unpublished work by James 

Calusdian. A laptop computer was used to run the VIs and collect the data, the 3DM-

GX1 was connected to the laptop via a USB to serial port converter, and the encoder was 

connected to a NI USB 6501 digital input/output module via USB. 

Certain limitations were noted when using just LabVIEW from a laptop computer. 

First, due to the way the VIs were implemented and because of the laptop computer’s 

limitations, the frequency of the data collected varied somewhat. On average, one sample 

from the encoder and one sample from the 3DM-GX1 were collected every 35 ms. An 

attempt was made to increase the sample time but did not yield significant improvements. 

Second, there was ambiguity when attempting to synchronize the timing. The exact time 

that the encoder data was pulled was not able to be accurately time-stamped, and this 

made attempting to synchronize the encoder time with the 3DM-GX1 time somewhat 

arbitrary. In addition, it was desired to increase the sampling rate of the encoder to at 
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least 1 kHz, and this was not possible when using LabVIEW on the laptop. For these 

reasons, and since timing errors on the order of a few milliseconds were considered 

significant, it was determined that a dedicated system was needed for real-time data 

collection. 

C. COMPACT RIO WITH FPGA 

The National Instruments CompactRIO Real-Time controller, the NI cRIO-9012, 

with a field programmable gate array (FPGA) running at 40 MHz was used to increase 

the speed of the encoder data collection and to synchronize up all data collection efforts. 

The CompactRIO had a standalone processor that ran its own operating system, which 

was optimized to run LabVIEW virtual instruments with far less overhead than a personal 

computer (PC) operating system. This enabled more predictable timing as well as 

synchronizing the data collection effort. 

The CompactRIO interfaced with a desktop PC via an Ethernet connection 

through a gateway. This allowed the VIs to be developed on the desktop PC and then 

deployed to the CompactRIO for the time-critical execution. LabVIEW’s Real-Time 

Environment enabled variables to be shared across the Ethernet connection, and all 

“button pushing” required to collect data could be accomplished via a single PC. 

For applications where timing was extremely critical, like reading the encoder, the 

CompactRIO had a Field Programmable Gate Array (FPGA) that could be specially 

configured. This required the LabVIEW Real-Time project module be installed. To 

configure the FPGA a VI simply had to be created with the FPGA as the target. When 

building the VI in LabVIEW, this limited the functions that could be used to those which 

could specifically be implemented using the FPGA. Once the VI was built, LabVIEW 

automatically compiled the VI and configured the FPGA prior to running. Compiling and 

configuring the FPGA took up to an hour or more for the VI used in this thesis. However, 

the long compilation/configuration process was only required one time if the VI was not 

modified. On subsequent times when the VI ran on the FPGA, it worked like the other 

VIs on the CompactRIO. For this thesis, the FPGA was used to control and collect the 

encoder data. 



 50

The real-time project structure used was based on one of the basic templates 

LabVIEW provided. From a top-level view, the CompactRIO was used to collect and 

buffer the data, and then periodically the data were passed to the host PC to be saved to 

disk. More specifically, a VI was built for the FPGA on the CompactRIO to gather the 

encoder data. These data were accessed by a “target” VI running on the CompactRIO. 

The “Host” VI running on the PC collected the buffered data and wrote to a file on the 

PC. Global variables were used to make the data accessible between the VIs. The project 

structure is shown in Figure 24. 

 

Figure 24.   LabVIEW Real-Time Project Structure. 

The CompactRIO provided a number of ways to interface with real-world data 

systems. The Ethernet port was used to communicate with the PC that ran the VIs and 

collected the data for later use. One serial port provided standard RS-232 data 

communication. By design, the USB port was configured only for data storage, not for 
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communication with other data collection units that used a USB. For this thesis, the USB 

storage was not used due to the Department of Defense Information Systems’ ban on 

flash media and because the Ethernet connection provided an adequate solution for data 

storage. Finally, four bays were available for compatible National Instruments 

input/output modules. These I/O modules communicated with the CompactRIO and were 

able to be accessed directly using the FPGA. 

The CompactRIO is shown in Figure 25 with the power and Ethernet cables 

connected and the COM port and USB connectors empty. In addition, the data collection 

device used to communicate with the encoder is also seen in the second of the four bays. 

The CompactRIO was configured with a National Instruments NI 9403 data collection 

device that was used to communicate exclusively with the encoder. The 3DM-GX1 and 

3DM-GX3 used the single serial port to communicate with the LabVIEW VIs. 

 

Figure 25.   CompactRIO With NI 9403. 

1. NI 9403 Data Collection Device 

The National Instruments NI 9403 32-Channel TTL Digital Input/Output 

Module provided 32 digital input and output ports, which was more than enough for 
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this project. The FPGA on the CompactRIO was able to control the NI 9403 digital 

I/O ports directly, enabling very high read and write times.  

The pin-out diagram that was used for connecting to the encoder is shown in 

Figure 26. Note that these were connected via the modified parallel cable discussed in a 

previous section. 

 

Figure 26.   NI 9403 Connector Pin-Out to Encoder. After [25] 

2. Encoder.VI 

The purpose of the “Encoder” virtual instrument was to collect the encoder data at 

a fairly high data rate ( 1 kHz). The order and timing of the data read protocol shown in 

Figure 23 was implemented using a VI on the FPGA. Input and output pins were made 

available via the NI 9403 and were configured to allow the FPGA to have direct access to 

those lines. This is shown in Figure 27. The items D0 through OE2 in the Mod2 folder 

beneath the FPGA target were all directly accessible by the FPGA. 
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Figure 27.   FPGA–Direct Access to Encoder Data Pins. 

From a top-level perspective, the encoder VI operated on a fixed cycle to read one 

sample of encoder data per cycle, time-stamp it, and then buffer that data. Each cycle the 

LSB and MSB data from the encoder, along with the clock “tick” from the FPGA clock 

when the LSB was pulled, were buffered. In Figure 28, the block diagram of 

“Encoder.vi” is shown. 
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Figure 28.   Encoder.VI Block Diagram. 

A one-dimensional 75-element array was used to buffer the data. The idea was 

that the encoder VI would be running at a much higher rate than it was called to output 

data, so the data values collected each cycle were buffered to ensure no data were lost. 

This created the potential of pulling the same data multiple times, depending on how 

quickly the data were pulled. At 1 kHz, if this array was read faster than once every 25 

ms, then some data would overlap. Conversely, if it was read slower than once every 25 

ms, then some data would be lost. Care was taken to ensure that, as much as possible, no 

data were lost, since removing redundant data was a simple thing to accomplish in post-

processing. 

The 75-element buffer array was broken into three sub-arrays. The first sub-array, 

indexes 0–24 of the overall buffer, stored the previous 25 values of the tick time that the 

encoder least significant byte was received. The next sub-array, indexes 25–49 of the 
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overall buffer, was for the overall index of the encoder VI loop. This value counted up 

from zero as soon as the VI started and continued upward as long as the VI was running. 

The index value was important since the tick time could rollover while the loop index 

would not. Finally, indexes 50–74 of the overall buffer stored the previous 25 values of 

the encoder position, an integer from 0 to 162 , referred to as the encoder “count.” In each 

sub-array, the index that was overwritten incremented by one every cycle, modulo 25, 

such that the index in each sub-array depended on the current iteration of the loop (see 

Figure 28). 

A stacked sequence was used to implement the required sequence of events to 

collect data from the encoder. The sequence has been expanded out and is shown in 

Figure 29. Note that the magenta boxes each represented a single pin on the NI 9403, as 

labeled in Figure 27. The data were collected LSB first, then MSB, in accordance with 

[24]. Since the LSB was the most critical values and the MSB was unlikely to change 

significantly over a small period of time, the time that the LSB read was completed was 

the tick time collected and associated with that particular value. 

The maximum data rate attempted with the block diagram shown in Figure 28 

was 4 kHz. This was demonstrated successfully but ultimately 1 kHz was used because of 

timing concerns. At 4 kHz the buffered data array would have to be read and stored once 

every 6 ms, and this was not realizable with the overall design. An adequate number of 

samples from the encoder and data were able to be collected at 1 kHz without significant 

loss of samples. 
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Figure 29.   Encoder.VI Stacked Sequence, Broken Out.



 57

3. Target.VI 

The “target” VIs were deployed to the CompactRIO, and their goal was to 

interface with the encoder VI as well as with the MicroStrain sensor and then make that 

data available over the Ethernet connection. A separate VI was written for 

communication with the 3DM-GX1 and the 3DM-GX3. Both target VIs were built to 

communicate with the MicroStrain sensors in a “polled” manner, as described in Chapter 

II. The block diagram was very similar for each and, therefore, only the 3DM-GX3 target 

VI is shown in detail in this section while the full block diagram for the 3DM-GX1 and 

the corresponding details are found in Appendix A. When applicable, major differences 

between the two VIs will be highlighted and expanded upon in this section.  

The VI “target - polled - 3DM-GX3.vi” was built to run two timed loops in 

parallel, one to call the “encoder.vi” and collect data from the encoder, and the other to 

collect data from the 3DM-GX3 via the serial port. In this section Loop 1 refers to the 

timed loop in which the encoder data were collected, while Loop 2 refers to the timed 

loop in which the 3DM-GX3 data were collected. 

Both loops buffered the data received and periodically updated a global variable 

with the new data. The timing of each loop was adjusted empirically to ensure adequate 

timing for data collection. If the loops were executed too fast, certain threads would out-

prioritize others on the CompactRIO, which resulted in gaps in the data. Similarly, 

attempting to update the global variables each loop iteration caused the entire VI to suffer 

a performance decrease resulting in gaps in the data. For best performance Loop 1 and 

Loop 2 were iterated once every 10 ms. 

a. Loop 1 

For Loop 1 the encoder.vi was set to run continuously on the FPGA. Once 

per cycle the encoder data would be pulled and buffered. A two-dimensional array 

buffered 100 samples of encoder data. Each sample of encoder data contained 75 data 

points corresponding to the 25 previous encoder values. These values were from the 

buffer array generated by encoder.vi. In addition to those 75 points, the time-stamp and 
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encoder loop index corresponding to when the encoder data were read were also buffered 

with the data each loop iteration. Every 100 cycles the buffered array was converted to a 

one dimensional array and then output to the global variable “Timestamped Encoder 

Array.” The global variables were required to be one-dimensional due to LabVIEW 

convention. 

Every time the encoder data were pulled the onboard CPU time was called and 

recorded. This provided a reference time for the value of the encoder index at the time 

that the encoder data array was pulled, within a few tens of microseconds. Thus, a 

reasonably accurate method of time-stamping the encoder data to a common reference 

time, the CompactRIO clock, was established. The overall process is shown in Figure 30. 
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Figure 30.   3DM-GX3 Target VI, Loop 1.
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In Figure 30, it is seen that there was a conditional case structure that handled 

updating the global variable. The “True” frame collected the encoder data and time-

stamp, updated the buffer array, and then updated the global variable. This frame 

executed once every 100 iterations, which worked out to once per second with a 10 ms 

timed loop. The “False” frame simply collected the encoder data and time-stamp and then 

updated the buffer array. This process is shown in Figure 31. 

 

Figure 31.   3DM-GX3 Target VI, Loop 1, True/False Frames Expanded. 
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b. Loop 2 

Loop 2 collected the data from the MicroStrain sensor, buffered it, and 

then periodically updated a global variable with the buffered sensor data. To accomplish 

this, first the serial port was initialized for communication with the 3DM-GX3. The 

3DM-GX3 defaulted to a baud rate of 115,200, whereas the 3DM-GX1 communicated 

with a baud rate of 38,400. With each cycle, the encoder was commanded to output a 

certain set of data based on [14] or [16], and then the data were collected. The exact 

details of this operation differed between the 3DM-GX1 and the 3DM-GX3 but, in effect, 

the output of both was an array with the data blocks available for further processing. The 

overall LabVIEW block diagram for loop 2 is shown in Figure 32. 

The specific sub-VIs that were used to command, pull, and convert the 

GX1 and GX3 data were: “Send 3DM-G Data Request Command.vi,” “Get Record From 

Serial Port.vi,” and “Convert Serial Record to Integer Array.vi,” for the 3DM-GX1 and 

“Send 3DM-GX3 Data Request Command.vi,” “Get 3DM-GX3 Record From Serial 

Port.vi,” and “Convert 3DM-GX3 Record to Integer Array.vi,” for the 3DM-GX3. The 

block diagrams for these VIs are shown in detail in Appendix A. 

A time-stamp was collected each time the data were read in from the 

MicroStrain sensor. There was an inherent latency between the time the data request was 

received, processed, and then output to the serial port by the MicroStrain sensor and the 

time they were received by the VI on the CompactRIO. This time misalignment was 

handled in the data post-processing, since there was no way to synchronize the GX1 

clock to the CompactRIO clock. There appeared to be a way in [16] to synchronize the 

GX3 clock to the CompactRIO clock using the “Timer” command, but that was not 

investigated for this thesis due to time constraints.  
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Figure 32.   3DM-GX3 Target VI, Loop 2.
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The exact format of the data differed between the 3DM-GX1 and the 

3DM-GX3. The 3DM-GX1 data returned were nothing more than integers that required 

scaling according to [14] to convert the values into meaningful results. The data returned 

from the 3DM-GX3 were usually 32-bit single precision floating point numbers 

conforming to IEEE-754. However, some data that could be requested from the 3DM-

GX3 were not 32 bits long, and for flexibility the data array after processing the serial 

data was simply an array of bytes. These bytes were then combined as necessary in the 

VI to produce meaningful results. A sample of this recombination process is shown in 

Figure 33, where the Euler angles and Euler angle rates are recombined and converted to 

single precision floating point numbers in accordance with [16]. The Euler angles were in 

the Earth/Navigation reference frame. Also note that a timer value was returned by the 

GX3, representing the number of seconds after power on that the data was valid. Most 

often the data requested for the GX3 were the Euler Angles and the Euler Angle Rates. 

However, a few other data requests were built in and are shown in detail in Appendix A. 



 64

 

Figure 33.   3DM-GX3 Target VI, Data Recombined for Euler Angles and Rates. 

For the 3DM-GX1, the only data pull built into the VI was for the Gyro-

Stabilized Quaternion and Vectors, which returned the quaternion, x, y, z magnetic field, 

x, y, z acceleration, and x, y, z angular rate. All x, y, z were in the body reference frame 

and converted to the Earth/Navigation frame via the quaternion. It also returned a timer 

value that could be converted and used in a similar way that the 3DM-GX3 time was. The 

frame that converted the serial data integer array from the 3DM-GX1 into the desired 

values is shown in Figure 34. 
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Figure 34.   3DM-GX1 Target VI, Recombined Stabilized Quaternion and Vectors. 

The scaled or combined data were then passed to a buffer, along with the 

time-stamp. A two-dimensional array of 20 rows and 100 columns was used to buffer the 

data. The first row contained the time-stamp, and the next rows contained up to 19 

different outputs. If a certain data request did not have 19 outputs, then the remaining 

rows were simply 0 valued. The index of the buffer was incremented every iteration of 

the loop and was tied directly to the loop index, modulo 100. 

The conditional structure that controlled the buffering and updating of the 

MicroStrain sensor data is shown in detail in Figure 35. When it was time to update the 

global variable “3DM-GX1 Array” the two-dimensional buffer array was flattened to a 

one-dimensional array because of the requirements of LabVIEW. Note that in order to 

simplify the data collection and have as few VIs as possible to collect and save the data, 

the global variable “3DM-GX1 Array” is used to represent both the 3DM-GX1 and the 

3DM-GX3 data since only one of the sensors can be connected to the CompactRIO at a 

time. 
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Figure 35.   3DM-GX3 Target VI, Loop 2, True/False Frames Expanded. 

4. Host-to-Save.vi 

The “Host-to-Save.vi” ran on the host PC and was used to read the data collected 

by the CompactRIO and save it to disk. The timed loop executed once every 10 ms and 

continually read in the two global data variables “Timestamped Encoder Array” and 

“3DM-GX1 Array,” writing them to file when either variable was updated. The block 

diagram for this VI is shown in Figure 36. 
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Figure 36.   Host–to–Save.vi.
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Upon execution, the VI prompted the user to input two file names, one for the 

MicroStrain sensor data and one for the encoder data. Then, the global variables were 

read in and converted back into two-dimensional arrays, a 77 row by 100 column array 

for the encoder data and a 20 by 100 array for the MicroStrain sensor data. If the data 

arrays had been updated, they were then appended to their respective tab delimited text 

file. If the arrays had not been updated, then no action was taken and nothing was written 

to file. Stopping the execution of this VI stopped the execution of the other VIs. 

5. LabVIEW Data Collection Procedures 

The following outlines the proper procedures for collecting MicroStrain sensor 

data with the corresponding encoder data. The following steps should be completed in 

order: 

 Ensure power is on. Power should be checked on the CompactRIO, the 

5 V dc power supply to the Encoder and either the 3DM-GX1 or 3DM-

GX3. 

 Run the appropriate target VI, either “target - polled - 3DM-GX1.vi” or 

“target - polled - 3DM-GX3.vi” and make sure everything on the front 

panel appears to be collecting data. The numbers in the array should be 

non-zero, the encoder counts should be non-zero, and it is expected that 

some numbers will change at least every second, even while at rest. 

  Run the “host - to - save.vi,” and when prompted enter the name of the 

text file for the sensor data and the name of the text file for the encoder 

data. Be sure to include the extension “.txt” in the file name. 

 Conduct Experiment. Experiment length should be kept to approximately 

30 seconds or less due to data processing limitations. 

 Hit stop on the host front panel. If target is still going, hit stop on the 

target (this was required occasionally). A known bug is that if target stop 

button was used instead of the host, then the next time the target was run it 
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would not run continuously and would stop almost immediately. The next 

time the VI was run it would work as expected. 

D. ORIENTATION DATA CONVERSIONS 

The data collected from the encoder representing the shaft position were the raw 

“counts,” which were integers that increased from 0 to 216 as the shaft turned clockwise 

through one full rotation. These counts were converted to degrees using (4). When 

referenced to the initial value collected, the encoder data collected represented the 

angular displacement from the starting point. 

The encoder data could represent the roll, pitch, or yaw in the Earth/Navigation 

reference frame, depending upon the orientation of the sensors and the test apparatus 

pendulum. With the pendulum vertical and the MicroStrain sensor’s y-axis aligned with 

the direction of travel, the encoder data represented roll. Note that if the sensor’s x-axis 

was pointing in toward the encoder, then the encoder angle represented roll directly, but 

if the sensor’s x-axis was pointed away from the encoder, then the encoder angle 

represented   1 roll  and had to be appropriately scaled in the data analysis. When the 

pendulum was vertical and the sensor’s x-axis was aligned with the direction of rotation, 

then the encoder angle represented the pitch. Finally, when the entire test apparatus was 

tilted up 90 degrees and the pendulum movement was parallel to the ground and the x-

axis of the sensor was aligned with the pendulum’s direction of travel, as in the case for 

pitch, the encoder data represented yaw. 

The orientation data collected from the 3DM-GX3 were already provided as Euler 

angles that were referenced to the Earth/Navigation reference frame and could be used 

for roll, pitch, and yaw. Although the 3DM-GX1 had the ability to output these angles 

directly as well, previously developed data collection VIs had focused on providing body 

frame referenced data and a quaternion, 
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From this vector the Euler angles representing roll, pitch, and yaw could be calculated [9] 

by  
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and 
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E. ANGULAR VELOCITY AND ACCELERATION 

In addition to measuring the orientation of the sensor it was also desired to test the 

accuracy of the MicroStrain’s angular velocity and linear acceleration outputs, if 

possible. Both of these parameters were output in the sensor’s body reference frame. 

Each additional parameter required a new “truth” reference for comparison. 

1. Theoretical Calculated Truth 

To measure the angular velocity, the pendulum must be in the vertical position 

and the MARG sensor needs to be aligned so that the axis under test is in line and parallel 

to the axis of rotation and, ideally, horizontal to the ground plane. Aligned this way the 

encoder data represents the angle turned about the axis under test, and the angular 

velocity  , also referred to as the angular rate, can be calculated by 

    d
t t

dt
   (9) 

where  t  is the angle of the encoder over time. 

To measure the dynamic accuracy of the acceleration output by the sensors, which 

was a linear acceleration and not an angular acceleration, basic physics is applied to 

calculate the truth data using only the encoder angle. For this explanation, assume that the 

x-axis of the sensor is aligned with the direction of travel of the pendulum, the z-axis of 

the sensor is in line with the pendulum, and positive z is down with the pendulum 

positioned vertically. Note that any two axes can be aligned in this fashion for testing. 
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The total linear acceleration at the end of the pendulum while it is swinging is a 

combination of the tangential acceleration and the radial acceleration, both due to the 

pendulum swinging, as well as the acceleration component due to gravity. From [26], the 

tangential acceleration is 

 ta r  (10) 

where   is the angular acceleration and r is the radius of the pendulum from the center 

of the axis of rotation to the center point of the sensor. The angular acceleration can be 

calculated by 

    
2

2
.

d
t t

dt
   (11) 

The radial acceleration directed toward the point of rotation is 

 2 .ra r  (12) 

Then the total linear acceleration at the end of the pendulum, including gravity, is  

 .l t r ga a a a    (13) 

Since the body axis was aligned with x in the direction of travel and z aligned with the 

pendulum, the component accelerations are 

 sinx t ga a a    (14) 

and 
 cos .z r ga a a    (15) 

From (10)–(15), in terms of the encoder angle   and the radius r only, the linear 

acceleration of the axis under test is determined by 

       
2

2
sinx g

d
a t t r a t

dt
 

 
  
 

 (16) 

and 

       
2

cos .z g

d
a t t r a t

dt
    

 
 (17) 

2. Actual Calculated Truth 

Although the desired signal from the encoder was purely the shaft angle, the 

actual signal from the encoder had a certain amount of added noise, probably due to 
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quantization errors in the encoder as well as noise in the system. The presence of noise 

significantly impacted the ability to calculate accurate “truth” data from the encoder 

angle. 

For example, when released from approximately 70 degrees in a free fall, the 

pendulum period was approximately 1 second. Assuming this was the highest frequency 

event that was recorded and that it was allowed to damp out to a stop, then the maximum 

expected frequency expected would be 1 Hz. Allowing for other influences, we expect 

frequencies not more than 5 to 10 Hz. Looking at a zoomed in plot of the raw encoder 

data in Figure 37, we see that the encoder data is not just a smooth low frequency signal 

since there are several “hops” and “jumps” off of what should be a smooth line recording 

of the encoder data. 

 

Figure 37.   Sample Encoder Data, Not a Smooth Curve. 

The fast Fourier transform (FFT) of the encoder data was taken, and it showed 

that there appeared to be some amount of white noise in the system. In Figure 38, the 

FFT of the encoder data of the same sample data is shown. 
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Figure 38.   FFT of Sample Encoder Data. 

From the figure there appears to be only significant low frequency data. In Figure 39, the 

same FFT is shown only zoomed in around the frequencies of interest, with peaks near 

1 Hz as expected. 
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Figure 39.   FFT of Sample Encoder Data, 10 Hz to 10 Hz. 

Although the major frequencies in the signal are near 0 Hz, the same FFT is 

shown in Figure 40 across all sampled frequencies but zoomed in on the noise (the 

magnitude of the y axis limited from 0 to 25). Note that there are relatively uniform 

values across all frequencies, indicating some kind of white noise. 
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Figure 40.   FFT of Sample Encoder Data,  500 Hz, Zoomed to Show Noise. 

Although not noticeable when computing the accuracy of the angle output by the 

sensor, the presence of the noise is much more significant when computing the truth data 

for angular velocity, the time derivative of the encoder angle, from (9). With the same 

encoder data as in Figure 37, the angular velocity was calculated and is shown in Figure 

41, with the sensor’s measured angular velocity plotted on top. The two are sometimes 

aligned, especially at the lower angular velocities, but more often than not the 

MicroStrain sensor’s data shows what the calculated “truth” data should be rather than 

the other way around. 
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Figure 41.   Sample Calculated Angular Velocity. 

In Figure 42, the FFT of the derived encoder angular velocity is shown. It is clear 

that the high frequency noise has been amplified and is no longer insignificant. 

 

Figure 42.   FFT of Sample Calculated Angular Velocity. 
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In the Laplace domain, differentiation is simply s times the Laplace transform of 

the signal. Since js e   it is clear that the higher frequencies are going to be scaled more 

than the lower frequencies. When the signal is differentiated, the high frequency parts of 

the noise grow faster than the low frequency parts of the noise. This is most apparent in 

Figure 43, which shows the FFT of the calculated angular acceleration. This was 

calculated by differentiating the angular velocity. Although the low frequency “spikes” of 

the desired signal can be seen, the calculated angular acceleration is dominated by the 

growing noise, such that the desired low frequency signal in the center is not even 

recognizable. 

 

Figure 43.   FFT of Sample Calculated Angular Acceleration. 

Given Figures 42 and 43, it is clear that the linear accelerations calculated with 

(16) and (17) are not going to be valid. Thus, without manipulating the data in some way, 

the angular velocity and linear acceleration “truth” data cannot be calculated from the 

encoder angle. 
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3. Calculated “Truth Data” Work-Arounds 

Since the problems with the calculated angular velocity and angular acceleration 

were due to noise, the obvious first solution was to attempt some kind of filter. Early 

testing was done using a very simple sliding window averaging filter, as well as a more 

complicated equi-ripple FIR low pass filter with a pass band at 10 Hz, a stop band at 50 

Hz, and a 30 dB stopband ripple. Many different methods were attempted. The filter was 

applied to the encoder data only, to the encoder data and the calculated angular velocity, 

and, finally, to the encoder data, the calculated angular velocity, and the calculated 

angular acceleration. The code used for the FIR filter can be found in Appendix B, 

Encoder_Filter.m. This method met with some success, as seen in Figure 44, which 

shows the same data from before filtered using the FIR filter previously described on 

both the encoder data before it was differentiated as well as the calculated data after 

differentiation.  

 

Figure 44.   Sample Calculated Filtered Angular Velocity.  
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Clearly, the filtered data more closely tracks the sensor data than the unfiltered 

data did, but it is still not accurate enough to use as a truth source for comparison. In 

addition, the FIR filter scaled the data and slightly shifted it in time. An FIR filter was 

chosen with linear phase so, theoretically, the timing could be resolved; however, this 

would require even further manipulation of the “truth” data. 

Another possible way to extract the encoder angle from the noise is to implement 

a Weiner filter on the collected encoder data. In theory, this provides the best estimate of 

the encoder angle with the least error, which can then be used in combination with 

differentiation and filtering. This method was not attempted due to time constraints. 

Ultimately, all of the solutions required too many manipulations of the data to get 

the required “truth” data. The more the data were manipulated, the less “true” they 

became. Without a valid source of truth data, the angular velocity and linear acceleration 

values were not tested and, thus, for this thesis only the orientation data was tested 

F. TIMING 

Even though the data were time-stamped or indexed, as mentioned in previous 

sections, every single point did not have a timestamp in seconds. In addition, there was a 

small amount of variation in the time-stamping process and, therefore, post processing 

was required to synchronize the data to the proper times. This synchronization was done 

using MATLAB during post processing, and the commented code with specific details 

can be found in Appendix B. 

 This section discusses generally what was done to get the data referenced to a 

common clock time and does not expand on the details of the code. The CompactRIO 

clock time-stamp provided the number of seconds elapsed since 12:00 A.M. Universal 

Time, January 1, 1904. This time-stamp was used as the common clock reference to 

which all data were synchronized. Test results were ultimately converted into a common 

“elapsed time” for simplicity. 
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1. Data Collection Time-Stamping 

The encoder.vi, which ran on the FPGA, did not have direct access to the 

CompactRIO clock. Instead, it had access to a tick counter that incremented with the 

FPGA’s clock and an index counter that was incremented with each iteration of the VI’s 

execution loop. When the array containing the 25 current and previous values of the 

encoder was pulled by the Target.VI on the CompactRIO, the current index of the FPGA 

was also pulled. A time-stamp from the CompactRIO was associated with that particular 

index, and with knowledge of the FPGA clock ticks and index (1 tick was 1 40,000  of a 

second, and the encoder index incremented every 0.001 seconds) the tick-stamped 

encoder data could be resolved to the single time-stamped encoder value. Because the 

time that the encoder index was read and the time the stamp was pulled can have some 

small amount of variation (due to LabVIEW constraints), 100 points that had been time-

stamped directly were selected at evenly spaced intervals through the data, and then all of 

the data collected were synchronized with respect to that single time-stamp. The time-

stamp of all 100 sets of data were then averaged to provide a uniform time for each 

encoder value that was referenced to the CompactRIO clock. The details of this process 

are shown in Appendix B under the function “process_tick_time.m.” 

For the MicroStrain data, the time-stamp was recorded when the data were 

received on the serial bus. Since both the 3DM-GX1 and 3DM-GX3 had a timer that 

indicated when the data were valid, the recorded CompactRIO time-stamp was associated 

with that time. This introduced a small time offset since it was unrealistic to assume that 

the time the data arrived at the serial port was the exact time that the data were valid. 

However, no better solution was available, and the data from the sensors were referenced 

to the CompactRIO clock when they were received.  

2. Correcting 3DM-GX1 and 3DM-GX3 Timing 

Early test results showed that there was some amount of timing error between the 

time-stamped MircroStrain data and the time-stamped encoder data. This was identified 

by observing the sinusoidal values from both sources. There was a noticeable sinusoidal 
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error when differencing the two, which indicated a possible timing error. An example of 

the raw data that had a timing error is shown in Figure 45. Clearly, both the encoder and 

the sensor are tracking the same motion, but the time alignment introduced an artificial 

error, seen by the red dots of the 3DM-GX1 data appearing to lag behind the blue dots of 

the encoder data. 

 

Figure 45.   Encoder and Sensor Data, Detail Showing Timing Offset. 

The difference in time between the two sets of data could be rectified by lining up 

the rising and falling lines of data and then identifying the offset value and applying that 

to all data times. To do this, peaks were identified in both the encoder data and the 

MicroStrain data. Since the MicroStrain data sampling period was not nearly as fast as 

the encoder, the exact peak was not always captured by the MicroStrain. To help 

compensate for this limitation, tests were always run such that they captured some 

amount of sinusoidal motion. When the test had many oscillations, multiple peaks were 

identified from the MicroStrain data. Some of the peaks occurred before the true peak, 

whereas others occurred just after the actual peak. Therefore, by averaging the difference 

between the identified peaks in the MicroStrain data and the encoder data, a reasonable 

estimate of the time-stamp error could be made and adjusted for. 

In Figure 46, the error of the data in Figure 45 is plotted before any time 

adjustment was made, and the sinusoidal error can be clearly seen. In Figure 47, the same 
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data are used to calculate the error, but the times have been adjusted. With the method 

described previously, an 8.39 ms timing difference was removed. Notice that a significant 

amount of the error goes away, though there is still a slight sinusoidal characteristic to the 

error, indicating that there may still be some timing inaccuracies. 

 

Figure 46.   Error Plot With No Timing Correction. 

 

Figure 47.   Error Plot With Timing Correction. 
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The point was not to make the error go to zero, but rather to get an accurate 

reading of the true error as output by the sensor. The details of this function are shown in 

Appendix B under the function “sensor_time_align.m.”  

In order to ensure that the timing data could be aligned, there needed to be some 

amount of free swinging or sinusoidal data collected each test. This requirement is 

reflected in the methodology shown in Chapter VI. If the user did not want to adjust the 

time in this manner, then this feature could be turned off and the time adjustment could 

be manually input by the user with the MATLAB graphical user interface described in 

the next section. 

G. MATLAB DATA PROCESSING 

MATLAB R2008b was used for all data processing because of the ability to 

easily and rapidly manipulate data and because of the ease of which a user interface could 

be created for future data analysis. Each test that was run with the LabVIEW data 

collection and test apparatus created two data text files, one for the encoder and one for 

the sensor. These files can be read in by MATLAB functions and manipulated in order to 

align the times, remove excess data, and perform accuracy analysis. Standard plots are 

easily generated and data can be saved in processed form for future analysis. The 

following sections detail what was done by different functions and also introduces the 

GUI and explains how to use it to analyze data. The detailed commented code for all of 

the MATLAB functions used may be found in Appendix B. 

1. Turning Raw Data Into Results 

The basic flow of data, from raw data to graphs for easy analysis, proceeded in 

the following manner. The user provided the locations of the two data files to be analyzed 

and what type of sensor data it was, such as the 3DM-GX1 stabilized quaternion and 

vectors. Then the MATLAB functions read in the data and manipulated it appropriately, 

reshaping as necessary to have the first column represent time, and then each following 

column representing data that were collected. The encoder data were reshaped and 

aligned according to each element’s tick-time, all duplicate data values were removed, 
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then the remaining data were passed to the time alignment function described earlier. The 

MicroStrain data was also aligned in time order and adjusted, based on the previously 

described timing functions. A common elapsed time based on the CompactRIO time-

stamp was calculated for both sets of data. The encoder data were passed to a function to 

calculate the “truth” data for angular velocity and acceleration. 

It was assumed that for all tests the pendulum began in a steady, unmoving state. 

The data from the encoder and the MicroStrain sensor were averaged over the first two to 

three seconds, depending on the user selection. This value provided an “initial” value that 

was subtracted from all future values. Thus, all angles measured and displayed were 

relative to the starting angle. 

Depending on the type of data that were pulled from the MicroStrain sensors, we 

generated certain variables containing data such as the time, encoder angle, the sensor 

roll, pitch, and yaw, angular rate data and more to be used for analysis. From these 

variables, data could be plotted and an accuracy analysis could be completed. 

2. The Graphical User Interface “MEMS_Test” 

A graphical user interface (GUI) was designed in order to speed up the data 

analysis and to enable easy future use. The GUI was created with future expandability in 

mind, such that the basic functionality required for the data collected in this thesis were 

not the only capabilities designed into the GUI. Many placeholders exist for upgrades and 

future capabilities, and some capabilities may be seen by the user but are not allowed to 

be enabled. The GUI does a certain amount of error checking to ensure that the data 

required for a certain action are available, though it was not fully vetted to be completely 

“user-proof.” The GUI was designed to enable simple, rapid data analysis such that a user 

only had to make a few selections and hit the “Run” button for all of the required 

functions to turn raw data into results. The window that first appears when running the 

GUI “MEMS_Test.m” is shown in Figure 48. 
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Figure 48.   MEMS_Test GUI, Startup Window. 

The user may browse for the encoder data text file and the sensor data text file, or 

those fields may be edited directly. The 3DM-GX1 or 3DM-GX3 sensors may be selected 

in the upper right, and the sensor data pulled matches what is expected based on the 

default LabVIEW data pulled shown in Section C above. The user may select another 

type of data from the sensor; however, at this time only the default data types are 

supported. 

The box labeled “Encoder Data Parameters” contains a number of preset 

values required by some of the processing functions. The FPGA Array size should 

match the number of encoder values buffered on the FPGA, and the sampling 

frequency should match that in “encoder.VI” The Maximum Rotation rate may be 

used to threshold out any spurious points that are outside of these bounds, if desired. 
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The radius of rotation is used as r for (16) and (17) and is measured from the center of 

the pendulum axis of rotation to the center of the device under test. 

The box labeled “Analysis” allows the user to choose to threshold the data 

according to the set value and to have the sensor data aligned as described in Section F or 

to manually enter a sensor time/CPU time adjustment. The “zero motion time” is the 

amount of time the pendulum was at rest while collecting data before the dynamic test 

began. The “Encoder Measured” radio buttons can be adjusted to indicate what values the 

encoder was measuring as truth. 

The run button may be pressed to gather and compute all of the required data 

according to the setup parameters. When it has completed successfully a sound is played, 

and the indicator at the right turns green, indicating that the data have been updated. The 

average error is displayed and the time difference between the sensor data and the 

encoder data that was removed is displayed. If the “Adjust Sensor Times” button was not 

checked, then this will be blank. 

The MATLAB variables read in and used for analysis data may be saved by 

pressing the save button. All of the pertinent variables in memory are saved to a “.mat” 

file in the same location as the encoder data, using the same title, with “Analyzed Data 

#.mat” replacing the “*.txt” at the end. The same encoder file may have up to nine data 

files stored with different parameters. Once the data are saved, the save button is disabled 

until changes are made to prevent unnecessary duplicate files. 

Any time the critical parameters used to make computations are changed in the 

GUI, the “Data Not Updated” indicator goes red and indicates that the current values 

displayed on the GUI may not match what is in memory. Although data may still be used 

for plotting, saving is disabled 

After successfully running and storing variables in memory, the plotting half of 

the GUI is revealed, as shown in Figure 49. 
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Figure 49.   MEMS_Test GUI, Plotting Window Revealed. 

The desired output plots may be selected at any time, and when all selections have 

been made the “Plot Selected” button creates a separate figure for each checked item. 

Plots may be shown in radians or degrees, but this selection must be made before hitting 

the plot button. The text in the “Default Title” line is plotted as the top line of the title in 

all of the figures and defaults to the sensor under test, though the text may be changed by 

the user as desired. 

The plot “Without Setup Adjustments” plots the data without the sensor adjusted 

to have the average value of first few seconds equal zero degrees. In Figure 50, two plots 

of the same data are shown. The one on the left was plotted without setup adjustments, 

and the one on the right was adjusted for initial alignment errors. Note that the error plots 

are always computed with the data that have been adjusted for initial alignment, 

regardless of whether or not that box is checked. 
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Figure 50.   Sample Sensor Plots Without and With Adjustments, Respectively. 

Many plots of the errors as well as the Roll, Pitch, and Yaw plotted together are 

shown in Chapters VI and VII and are not shown here. The FFT plots shown in this 

chapter, Section E, were generated by checking the “Frequency Analysis” button. All 

data figures shown in this thesis were generated using the MEMS_Test GUI. 

H. SUMMARY 

In this chapter, the specifics of the data collection scheme used in this thesis were 

provided. The National Instruments hardware and the LabVIEW virtual instruments used 

to gather the data were shown and explained. The use of the encoder as the truth source 

was discussed and limitations were presented for deriving angular velocity and angular 

acceleration. The timing of the data samples was discussed and a MATLAB GUI was 

presented for quick and simple data analysis. 

In the next chapter, the specific test methodology of the five tests performed on 

the 3DM-GX1 and 3DM-GX3 is introduced. Test procedures are provided showing 

exactly how to gather the data and samples are shown of the encoder data collected on 

each test. In the end, a test matrix is put forth showing all of the tests performed for this 

thesis. 
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VI. TEST METHODOLOGY 

In this chapter, the different types of tests performed are explained. A detailed 

description is given of each test. For every test, it is assumed that the data collection 

equipment was set up according to Section C.5 of Chapter V. For the tests involving 

impact, the modified test apparatus with the impact arm introduced in Chapter IV was 

used. For each type of test, representative plots of the encoder data are provided to show 

the types of motion traced by each test. Finally, a test matrix is provided showing what 

tests were executed and the type of data collect from each to be analyzed, either roll, 

pitch, or yaw. 

A. FREE SWINGING 

The “free swinging” tests simply gathered the motion of the free swinging 

pendulum. When the test apparatus was vertical, the pendulum was pulled to the low, 

medium, or high mark on the reference board and immediately released and allowed to 

swing freely. The mount bearings had some amount of resistance and provided damping 

for the pendulum. Once the pendulum had stopped, data collection was ceased. Data were 

to be collected for each case, low/med/high, starting with the pendulum drawn initially to 

the right and also to the left. When the test apparatus was horizontal to measure yaw, a 

metronome was used to mark time at one beat per second. Using the metronome as an 

aid, we moved the pendulum between the low, med, or high marks and attempted to 

swing from one mark to the other in one second, before gradually damping out similar to 

the vertical case. A comparable amount of data were collected as the vertical case, and 

then the test was stopped. 

The steps for conducting this test were as follows. 

 Begin at neutral (center mark) before data collection was started. 

 Start data collection. Do not move the pendulum for 2–3 seconds. 

 If Pendulum Vertical: Move the pendulum either to the low, medium, or 

high mark and immediately release. 
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 If Pendulum Horizontal: Start metronome. Move the pendulum between 

the low, medium, or high mark, attempting to hit the mark at every beat of 

the metronome. Damp out to initial point. 

 When the pendulum had stopped (or after a few cycles in the horizontal 

test case), cease data collection. 

Representative plots of the encoder data collected for low, medium, and high tests 

are shown in Figures 51, 52, and 53, respectively. The angle directly from the encoder is 

shown in blue, and the interpolated values that were used to calculate the error between 

the encoder and the sensor are shown in green. 

 

Figure 51.   Free Swinging, Representative Encoder Angle, Low Release. 

 

Figure 52.   Free Swinging, Representative Encoder Angle, Medium Release. 
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Figure 53.   Free Swinging, Representative Encoder Angle, High Release. 

B. ARBITRARY SWINGING 

The “arbitrary swinging” tests were similar to the free swinging tests, except 

instead of drawing back and letting it go, the pendulum was moved in an arbitrary fashion 

either at a slow speed or a fast speed. When moving the pendulum in an arbitrary way a 

“slow” speed of movement was maintained by using a metronome to count off one beat 

per second, ensuring that no more than one mark on the reference board was passed in a 

second. A “fast” speed indicated that one mark or more were passed per second. As much 

as possible, a chaotic motion was used in both the horizontal and vertical test cases. A 

duration of 10 to 15 seconds of data were collected for roll, pitch, and yaw in fast and 

slow motions. 

The steps for conducting this test were as follows. 

 Begin at neutral (center mark) before data collection was started. 

 Start data collection and metronome. Do not move the pendulum for 2–3 

seconds. 

 Begin moving pendulum in arbitrary/chaotic fashion for 10–15 seconds. 

 Cease data collection. 
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Representative plots of the encoder data collected for slow and fast tests are 

shown in Figures 54 and 55, respectively. The angle directly from the encoder is shown 

in blue, and the interpolated values that were used to calculate the error between the 

encoder and the sensor are shown in green. 

 

Figure 54.   Arbitrary Swinging, Representative Encoder Angle, Slow Movement. 

 

Figure 55.   Arbitrary Swinging, Representative Encoder Angle, Fast Movement. 

C. SEMI-STATIC: MOVE AND HOLD 

The “semi-static, move and hold” tests examined the static response immediately 

following dynamic motion and visa versa. The pendulum began at neutral and then was 

moved to the point of maximum deflection and held for approximately 4 seconds. It was 

then released and allowed to swing freely for a couple of cycles, and then the data 
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collection was ceased. The pendulum was moved to maximum deflection both slowly, 

taking at least 3 seconds to get to the maximum value, and quickly, taking only 1 second 

or less to get to the maximum deflection. Movements to both the right and left sides of 

the reference board were tested. 

The steps for conducting this test were as follows. 

 Begin at neutral (center mark) before data collection was started. 

 Start data collection and metronome. Do not move the pendulum for 2–3 

seconds. 

 Using the slow or fast speeds defined above, move pendulum smoothly to 

maximum deflection. 

 When pendulum hits the cantilevered arm, hold it there for ~4 seconds. 

 Release pendulum and allow free swinging for a couple of cycles. 

 Cease data collection. 

Representative plots of the encoder data collected for slow and fast tests are 

shown in Figures 56 and 57, respectively. The angle directly from the encoder is shown 

in blue, and the interpolated values that were used to calculate the error between the 

encoder and the sensor are shown in green. 

 

Figure 56.   Semi-Static, Representative Encoder Angle, Slow Movement. 
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Figure 57.   Semi-Static, Representative Encoder Angle, Fast Movement. 

D. FREE SWING WITH IMPACT 

In order to run the “free swing with impact” tests, the test apparatus had to be 

modified in accordance with Section F.1 of Chapter IV. The “free swing with impact” 

tests were run in a very similar manner as the free swinging pendulum, in that the 

pendulum was drawn back to the low, medium, or high mark and then immediately 

released. It was allowed to swing freely and impact the board, bounce off, and then damp 

out to neutral. In the horizontal configuration, the pendulum was drawn back and then 

swung forward into the board and allowed to bounce off and return back to rest. 

The steps for conducting this test were as follows. 

 Begin at neutral (center mark) before data collection was started. 

 Start data collection. Do not move the pendulum for 2–3 seconds. 

 If Pendulum Vertical: Draw the pendulum either to the low, medium, or 

high mark and release. 

 If Pendulum Horizontal: Move the pendulum to the low, medium, or high 

mark, and then swing the pendulum toward the board. 

 Allow the pendulum to impact and bounce off of the board, eventually 

coming to rest. 

 Cease data collection. 
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Representative plots of the encoder data collected for low, medium, and high tests 

are shown in Figures 58, 59, and 60, respectively. The angle directly from the encoder is 

shown in blue, and the interpolated values that were used to calculate the error between 

the encoder and the sensor are shown in green. 

 

Figure 58.   Free Swing to Impact, Representative Encoder Angle, Low Release. 

 

Figure 59.   Free Swing to Impact, Representative Encoder Angle, Medium Release. 
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Figure 60.   Free Swing to Impact, Representative Encoder Angle, High Release. 

E. FREE SWING WITH IMPACT AND HOLD 

The “free swing with impact and hold” was nearly identical to the “free swing 

with impact” tests, except that instead of allowing the pendulum to bounce off of the 

impact board, a piece of Velcro was used to have the pendulum stick to the impact board 

and hold in place. Since the Velcro still allowed a very small amount of “bounce back,” 

the pendulum was manually pressed to the impact arm and held immediately after impact. 

The steps for conducting this test were as follows. 

 Begin at neutral (center mark) before data collection was started. 

 Start data collection. Do not move the pendulum for 2–3 seconds. 

 If Pendulum Vertical: Draw the pendulum either to the low, medium, or 

high mark and release. 

 If Pendulum Horizontal: Move the pendulum to the low, medium, or high 

mark, and then swing the pendulum toward the board. 

 Allow the pendulum to impact and stick for ~4 seconds. 

 Cease data collection. 

Representative plots of the encoder data collected for low, medium, and high tests 

are shown in Figures 61, 62, and 63, respectively. The angle directly from the encoder is 
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shown in blue, and the interpolated values that were used to calculate the error between 

the encoder and the sensor are shown in green. 

 

Figure 61.   Impact and Hold, Representative Encoder Angle, Low Release. 

 

Figure 62.   Impact and Hold, Representative Encoder Angle, Medium Release. 

 

Figure 63.   Impact and Hold, Representative Encoder Angle, High Release. 
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F. TEST MATRIX 

A test matrix was created to ensure all of the data were collected. One matrix was 

built for all of the tests not involving any impact and is shown in Table 6. Another test 

matrix was built for all tests involving an impact and is shown in Table 7. 
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Table 6.   Non-Impact Test Matrix.  

3DM-GX1 3DM-GX3   3DM-GX1 3DM-GX3 Free Swinging 
(Roll) 

Start Left Start Right Start Left Start Right  

Arbitrarily 
Swinging (Roll) 

3DM-GX1 3DM-GX3 
 

Semi-Static 
(Roll) 

Move Left Move Right Move Left Move Right 

Low          Slow      Slow         

Medium          Fast      Fast         

High                   

               

3DM-GX1 3DM-GX3   3DM-GX1 3DM-GX3 Free Swinging 
(Pitch) 

Start Left Start Right Start Left Start Right  

Arbitrarily 
Swinging (Pitch)

3DM-GX1 3DM-GX3 
 

Semi-Static 
(Pitch) 

Move Left Move Right Move Left Move Right 

Low          Slow      Slow         

Medium          Fast      Fast         

High                   

               

3DM-GX1 3DM-GX3   3DM-GX1 3DM-GX3 Free Swinging 
(Yaw) 

Start Left Start Right Start Left Start Right  

Arbitrarily 
Swinging (Yaw)

3DM-GX1 3DM-GX3 
 

Semi-Static 
(Yaw) 

Move Left Move Right Move Left Move Right 

Low          Slow      Slow         

Medium          Fast      Fast         

High                   



 100

Table 7.   Impact Test Matrix. 

 Free Swinging To 
Impact: (Roll) 

3DM-GX1 3DM-GX3
 

Free Swinging To 
Impact & Hold: (Roll) 

3DM-GX1 3DM-GX3 

Low      Low     

Medium      Medium     

High      High     

       

 Free Swinging To 
Impact: (Pitch) 

3DM-GX1 3DM-GX3
 

Free Swinging To 
Impact & Hold: (Pitch)

3DM-GX1 3DM-GX3 

Low      Low     

Medium      Medium     

High      High     

       

 Free Swinging To 
Impact: (Yaw) 

3DM-GX1 3DM-GX3
 

Free Swinging To 
Impact & Hold: (Yaw) 

3DM-GX1 3DM-GX3 

Low      Low     

Medium      Medium     

High      High     

 

For each open box a single test was run at those conditions and the data were 

recorded for analysis. The error plots of the results are shown in Chapter VII. 

G. SUMMARY 

The step-by-step methodology used to test the MEMS sensors was provided in 

this chapter, and a test matrix showing all of the tests that were performed was laid out. 

In the next chapter, the accuracy plots are presented for the two MicroStrain 

sensors examined for each of the tests in the provided matrix. For certain tests, additional 

plots are shown to provide added levels of detail. The goal is not to provide a 

comprehensive analysis of either sensor, but rather to show what types of tests can be 

performed and to collect some accuracy data and apply it to the sensors’ potential use in 

either personal navigation or human motion tracking. 



 101

VII. RESULTS AND DATA PLOTS 

In this chapter, the results of the testing accomplished with the new test apparatus 

are presented. First, the calculations for the error are defined. Then, for each test in the 

matrix introduced in Chapter VI an error plot is shown. For select tests the roll, pitch, and 

yaw are all plotted on one figure to show any “cross-talk.” Although a large amount of 

data are presented, the goal is not to conduct an exhaustive accuracy analysis survey on 

either sensor, but rather to show the types of test data that can be collected as well as to 

partially characterize each sensor with the specific application of a personal navigation 

system or human motion tracking in mind. 

Whenever possible, the automatic sensor time align described in Chapter V was 

used when reading the data for this section. However, in some instances, the algorithm 

failed to adequately align the data, and for those cases an offset was manually calculated 

based on the best approximation from the unadjusted data. 

A. ACCURACY DEFINITIONS 

Based on Tables 1 and 2 from Chapter II, the dynamic accuracy for both the 

3DM-GX1 and 3DM-GX3 should be  2 degrees. All accuracy plots shown in this 

chapter have lines at these values plotted for reference, though it is assumed that the 

accuracy specification is a root mean squared (RMS) accuracy and not an instantaneous 

accuracy. However, both the RMS and instantaneous accuracies are shown in all plots 

since in certain applications the instantaneous accuracy may be very important, whereas 

other applications may only be concerned with the RMS accuracy. 

Since the encoder data was not valid at the exact times the sensor data was valid, 

the data from the encoder were interpolated in order to match the times of the sensor data. 

The difference between the sensor value and the encoder value interpolated for that 

sensor time made up the absolute error. The RMS of the collection of individual absolute 

errors was calculated by 
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      2

RMSError mean s n a n   (18) 

for all n, where  s n  was the sensor value and  a n  was the interpolated angular value of 

the encoder. 

Since this thesis was more concerned with the dynamic performance than with 

long term static and dynamic performance, the RMS error calculations shown only took 

into account the errors after the user entered zero motion time, typically 2.5 seconds.  

B. 3DM-GX1 

This section contains the accuracy results of the tests performed according to the 

methodology set out in Chapter VI for the 3DM-GX1. For each test the roll, pitch, and 

yaw error plots are shown. 

1. Free Swinging 

The following sections contain the accuracy results of the Free Swinging tests 

performed according to the methodology set out in Chapter VI. 

a. Roll 

The roll accuracy results of the Free Swinging tests for the 3DM-GX1 are 

shown in Figures 64, 65, and 66 for the low, medium, and high release test cases, 

respectively. 
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Figure 64.   3DM-GX1, Free Swinging Test, Roll Accuracy, Low Release Angle. 

 

Figure 65.   3DM-GX1, Free Swinging Test, Roll Accuracy, Medium Release Angle. 



 104

 

Figure 66.   3DM-GX1, Free Swinging Test, Roll Accuracy, High Release Angle. 

b. Pitch 

The pitch accuracy results of the Free Swinging tests for the 3DM-GX1 

are shown in Figures 67, 68, and 69 for the low, medium, and high release test cases, 

respectively. 

 

Figure 67.   3DM-GX1, Free Swinging Test, Pitch Accuracy, Low Release Angle. 
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Figure 68.   3DM-GX1, Free Swinging Test, Pitch Accuracy, Medium Release Angle. 

 

Figure 69.   3DM-GX1, Free Swinging Test, Pitch Accuracy, High Release Angle. 

c. Yaw 

The yaw accuracy results of the Free Swinging tests for the 3DM-GX1 are 

shown in Figures 70, 71, and 72 for the low, medium, and high release test cases, 

respectively. In Figure 72, there appears to be an induced drift that did not show up in 

any of the other free swinging yaw tests. The cause of the drift is unknown. 
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Figure 70.   3DM-GX1, Free Swinging Test, Yaw Accuracy, Low Release Angle. 

 

Figure 71.   3DM-GX1, Free Swinging Test, Yaw Accuracy, Medium Release Angle. 
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Figure 72.   3DM-GX1, Free Swinging Test, Yaw Accuracy, High Release Angle. 

d. Free Swinging Tests’ Cross-Talk 

Although attempts were made to isolate each axis under test, some amount 

of cross-talk was seen. This was partly due to the test apparatus setup and partly due to 

errors in the sensor. In Figures 73, 74, and 75, the unadjusted roll, pitch, and yaw are all 

plotted on the same figure, one figure for each test apparatus configuration. The selected 

values for all three plots are shown for a “high” release case. 
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Figure 73.   3DM-GX1, Free Swinging Test, Cross-Talk Plot, Roll Under Test. 

 

Figure 74.   3DM-GX1, Free Swinging Test, Cross-Talk Plot, Pitch Under Test. 
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Figure 75.   3DM-GX1, Free Swinging Test, Cross-Talk Plot, Yaw Under Test. 

2. Arbitrary Swinging 

The following sections contain the accuracy results of the Arbitrary Swinging 

tests performed according to the methodology set out in Chapter VI. 

a. Roll 

The roll accuracy results of the Arbitrary Swinging tests for the 3DM-

GX1 are shown in Figure 76. Both the slow and the fast movement accuracies are shown. 



 110

 

Figure 76.   3DM-GX1, Arbitrary Swinging Test, Roll Accuracy. 

b. Pitch 

The pitch accuracy results of the Arbitrary Swinging tests for the 3DM-

GX1 are shown in Figure 77. Both the slow and the fast movement accuracies are shown. 

 

Figure 77.   3DM-GX1, Arbitrary Swinging Test, Pitch Accuracy. 
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c. Yaw 

The yaw accuracy results of the Arbitrary Swinging tests for the 3DM-

GX1 are shown in Figures 78. Both the slow and the fast movement accuracies are 

shown. 

 

Figure 78.   3DM-GX1, Arbitrary Swinging Test, Yaw Accuracy. 

3. Semi-Static: Move and Hold 

The following sections contain the accuracy results of the Semi-Static tests 

performed according to the methodology set out in Chapter VI. 

a. Roll 

The roll accuracy results of the Semi-Static tests for the 3DM-GX1 are 

shown in Figure 79 for both the slow and fast cases starting to the left and to the right. In 

Figure 80, the point where maximum deflection is reached when moving quickly to the 

right is zoomed in to show in detail the behavior of the sensor at that point.  
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Figure 79.   3DM-GX1, Semi-Static Test, Roll Accuracy. 

 

Figure 80.   3DM-GX1, Semi-Static Test, Roll Accuracy, Zoomed in to Show Detail. 



 113

b. Pitch 

The pitch accuracy results of the Semi-Static tests for the 3DM-GX1 are 

shown in Figure 81 for both the slow and fast cases starting to the left and to the right. In 

Figure 82, the point where maximum deflection is reached when moving quickly to the 

right is zoomed in to show in detail the behavior of the sensor at that point.  

 

Figure 81.   3DM-GX1, Semi-Static Test, Pitch Accuracy. 
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Figure 82.   3DM-GX1, Semi-Static Test, Pitch Accuracy, Zoomed in to Show Detail. 

c. Yaw 

The yaw accuracy results of the Semi-Static tests for the 3DM-GX1 are 

shown in Figure 83 for both the slow and fast cases starting to the left and to the right. In 

Figure 84, the point where maximum deflection is reached when moving quickly to the 

left is zoomed in to show in detail the behavior of the sensor at that point. 
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Figure 83.   3DM-GX1, Semi-Static Test, Yaw Accuracy. 

 

Figure 84.   3DM-GX1, Semi-Static Test, Yaw Accuracy, Zoomed in to Show Detail. 
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4. Free Swing With Impact, and Free Swing With Impact and Hold 

The following sections contain the accuracy results of the Free Swing with Impact 

tests plotted next to the accuracy results of the corresponding Free Swing with Impact 

and Hold tests for comparison. All were performed according to the methodology set out 

in Chapter VI. 

a. Roll 

The roll accuracy results of the impact tests for the 3DM-GX1 are shown 

in Figures 85, 86, and 87 for the low, medium, and high release test cases, respectively. 

Both the impact and the impact with hold cases are shown in all plots. 

 

Figure 85.   3DM-GX1, Impact Tests, Roll Accuracy, Low Release Angle. 
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Figure 86.   3DM-GX1, Impact Tests, Roll Accuracy, Medium Release Angle. 

 

Figure 87.   3DM-GX1, Impact Tests, Roll Accuracy, High Release Angle. 

b. Pitch 

The pitch accuracy results of the impact tests for the 3DM-GX1 are shown 

in Figures 88, 89, and 90 for the low, medium, and high release test cases, respectively.  

Both the impact and the impact with hold cases are shown in all plots. 
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Figure 88.   3DM-GX1, Impact Tests, Pitch Accuracy, Low Release Angle. 

 

Figure 89.   3DM-GX1, Impact Tests, Pitch Accuracy, Medium Release Angle. 
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Figure 90.   3DM-GX1, Impact Tests, Pitch Accuracy, High Release Angle. 

c. Yaw 

The yaw accuracy results of the impact tests for the 3DM-GX1 are shown 

in Figures 91, 92, and 93 for the low, medium, and high release test cases, respectively.  

Both the impact and the impact with hold cases are shown in all plots. 

 

Figure 91.   3DM-GX1, Impact Tests, Yaw Accuracy, Low Release Angle. 
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Figure 92.   3DM-GX1, Impact Tests, Yaw Accuracy, Medium Release Angle. 

 

Figure 93.   3DM-GX1, Impact Tests, Yaw Accuracy, High Release Angle. 

 

C. 3DM-GX3 

This section contains the accuracy results of the tests performed according to the 

methodology set out in Chapter VI for the 3DM-GX3. For each test the roll, pitch, and 

yaw error plots are shown. 
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1. Free Swinging 

The following sections contain the accuracy results of the Free Swinging tests 

performed according to the methodology set out in Chapter VI. 

a. Roll 

The roll accuracy results of the Free Swinging tests for the 3DM-GX3 are 

shown in Figures 94, 95, and 96 for the low, medium, and high release test cases, 

respectively. 

 

Figure 94.   3DM-GX3, Free Swinging Test, Roll Accuracy, Low Release Angle. 
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Figure 95.   3DM-GX3, Free Swinging Test, Roll Accuracy, Medium Release Angle. 

 

Figure 96.   3DM-GX3, Free Swinging Test, Roll Accuracy, High Release Angle. 

b. Pitch 

The pitch accuracy results of the Free Swinging tests for the 3DM-GX3 

are shown in Figures 97, 98, and 99 for the low, medium, and high release test cases, 

respectively. 
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Figure 97.   3DM-GX3, Free Swinging Test, Pitch Accuracy, Low Release Angle. 

 

Figure 98.   3DM-GX3, Free Swinging Test, Pitch Accuracy, Medium Release Angle. 
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Figure 99.   3DM-GX3, Free Swinging Test, Pitch Accuracy, High Release Angle. 

c. Yaw 

The yaw accuracy results of the Free Swinging tests for the 3DM-GX3 are 

shown in Figures 100, 101, and 102 for the low, medium, and high release test cases, 

respectively. 

 

Figure 100.   3DM-GX3, Free Swinging Test, Yaw Accuracy, Low Release Angle. 
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Figure 101.   3DM-GX3, Free Swinging Test, Yaw Accuracy, Medium Release Angle. 

 
 

Figure 102.   3DM-GX3, Free Swinging Test, Yaw Accuracy, High Release Angle. 

d. Free Swinging Tests’ Cross-Talk 

Although attempts were made to isolate each axis under test, some amount 

of cross-talk was seen. This was partly due to the test apparatus setup and partly due to 

errors in the sensor. In Figures 103, 104, and 105, the unadjusted roll, pitch, and yaw are 
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all plotted on the same figure, one figure for each test apparatus configuration. The 

selected values for all three plots are shown for a “high” release case. 

 

Figure 103.   3DM-GX3, Free Swinging Test, Cross-Talk Plot, Roll Under Test. 

 

Figure 104.   3DM-GX3, Free Swinging Test, Cross-Talk Plot, Pitch Under Test. 
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Figure 105.   3DM-GX3, Free Swinging Test, Cross-Talk Plot, Yaw Under Test. 

2. Arbitrary swinging 

The following sections contain the accuracy results of the Arbitrary Swinging 

tests performed according to the methodology set out in Chapter VI. 

a. Roll 

The roll accuracy results of the Arbitrary Swinging tests for the 3DM-

GX3 are shown in Figure 106. Both the slow and the fast movement accuracies are 

shown. 
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Figure 106.   3DM-GX3, Arbitrary Swinging Test, Roll Accuracy. 

b. Pitch 

The pitch accuracy results of the Arbitrary Swinging tests for the 3DM-

GX3 are shown in Figure 107. Both the slow and the fast movement accuracies are 

shown. 

 

 

Figure 107.   3DM-GX3, Arbitrary Swinging Test, Pitch Accuracy. 
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c. Yaw 

The yaw accuracy results of the Arbitrary Swinging tests for the 3DM-

GX1 are shown in Figures 108. Both the slow and the fast movement accuracies are 

shown. 

 

 

Figure 108.   3DM-GX3, Arbitrary Swinging Test, Yaw Accuracy. 

3. Semi-Static: Move and Hold 

The following sections contain the accuracy results of the Semi-Static tests 

performed according to the methodology set out in Chapter VI. 

a. Roll 

The roll accuracy results of the Semi-Static tests for the 3DM-GX3 are 

shown in Figure 109 for both the slow and fast cases starting to the left and to the right. 

In Figure 110, the point where maximum deflection is reached when moving quickly to 

the right is zoomed in to show in detail the behavior of the sensor at that point.  
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Figure 109.   3DM-GX3, Semi-Static Test, Roll Accuracy. 

 

Figure 110.   3DM-GX3, Semi-Static Test, Roll Accuracy, Zoomed in to Show Detail. 
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b. Pitch 

The pitch accuracy results of the Semi-Static tests for the 3DM-GX3 are 

shown in Figure 111 for both the slow and fast cases starting to the left and to the right. 

In Figure 112, the point where maximum deflection is reached when moving quickly to 

the right is zoomed in to show in detail the behavior of the sensor at that point.  

 

Figure 111.   3DM-GX3, Semi-Static Test, Pitch Accuracy. 
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Figure 112.   3DM-GX3, Semi-Static Test, Pitch Accuracy, Zoomed in to Show Detail. 

c. Yaw 

The yaw accuracy results of the Semi-Static tests for the 3DM-GX3 are 

shown in Figure 113 for both the slow and fast cases starting to the left and to the right. 

In Figure 114, the point where maximum deflection is reached when moving quickly to 

the right is zoomed in to show in detail the behavior of the sensor at that point. 
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Figure 113.   3DM-GX3, Semi-Static Test, Yaw Accuracy. 

 

Figure 114.   3DM-GX3, Semi-Static Test, Yaw Accuracy, Zoomed in to Show Detail. 
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4. Free Swing With Impact, and Free Swing With Impact and Hold 

The following sections contain the accuracy results of the Free Swing with Impact 

tests plotted next to the accuracy results of the corresponding Free Swing with Impact 

and Hold tests for comparison. All were performed according to the methodology set out 

in Chapter VI. 

a. Roll 

The roll accuracy results of the impact tests for the 3DM-GX3 are shown 

in Figures 115, 116, and 117 for the low, medium, and high release test cases, 

respectively. Both the impact and the impact with hold cases are shown in all plots. 

 

Figure 115.   3DM-GX1, Impact Tests, Roll Accuracy, Low Release Angle. 
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Figure 116.   3DM-GX1, Impact Tests, Roll Accuracy, Medium Release Angle. 

 

Figure 117.   3DM-GX1, Impact Tests, Roll Accuracy, High Release Angle. 

b. Pitch 

The pitch accuracy results of the impact tests for the 3DM-GX3 are shown 

in Figures 118, 119, and 120 for the low, medium, and high release test cases, 

respectively.  Both the impact and the impact with hold cases are shown in all plots. 
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Figure 118.   3DM-GX1, Impact Tests, Pitch Accuracy, Low Release Angle. 

 

Figure 119.   3DM-GX1, Impact Tests, Pitch Accuracy, Medium Release Angle. 
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Figure 120.   3DM-GX1, Impact Tests, Pitch Accuracy, High Release Angle. 

c. Yaw 

The yaw accuracy results of the impact tests for the 3DM-GX1 are shown 

in Figures 121, 122, and 123 for the low, medium, and high release test cases, 

respectively.  Both the impact and the impact with hold cases are shown in all plots. 

 

Figure 121.   3DM-GX3, Impact Tests, Yaw Accuracy, Low Release Angle. 
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Figure 122.   3DM-GX3, Impact Tests, Yaw Accuracy, Medium Release Angle. 

 

Figure 123.   3DM-GX3, Impact Tests, Yaw Accuracy, High Release Angle. 

D. OBSERVATIONS 

As the data show, both the 3DM-GX1 and 3DM-GX3 performed fairly well in the 

dynamic tests and often met the RMS dynamic accuracy requirements. However, there 

were some cases where the sensors either did not meet the specifications or had large 

spikes in the error. From the data presented, certain trends were identified for both of the 

sensors individually and as a pair. 
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The 3DM-GX1 usually performed well through both slow and fast motion tests 

but experienced significant drift when stopped following dynamic motion. This behavior 

was most pronounced in the semi-static test cases. In such test cases, the error tended to 

grow over time, even though the sensor was not moving. In addition, the impact tests 

seemed to cause discontinuities and jumps in the error of up to a full degree following 

impact, and the accuracy drifted from there. Otherwise, the 3DM-GX1 seemed to track 

well on the axis under test through dynamic motions, and there did not appear to be much 

cross-talk from either roll or pitch to yaw. Cross-talk of less than five degrees was 

observed that was more likely due to apparatus alignment errors than a serious sensor 

issue. 

The 3DM-GX3 did not perform as well as the 3DM-GX1 in most tests, usually 

having higher overall RMS error and larger swings in the errors. The 3DM-GX3 seemed 

to have a filter that delayed the sensor’s responsiveness to quick movements since the 

errors were low with slower motions but tended to grow with increasing pendulum 

velocity. Also, the values output by the sensor tended to undershoot the peak truth values, 

especially with fast dynamic motions, as though the data did not quite catch up before the 

sensor was moving down again. This delayed behavior was most evident on the semi-

static tests, where the data took a few seconds to reach the true value. Also, there 

appeared to be significant cross-talk between the roll or pitch and yaw axes. When testing 

either roll or pitch, the heading of the test apparatus was not changed, yet the yaw output 

registered 10 to 15 degree swings. The magnitude of the yaw values indicated that the 

cause was the sensor’s hardware or algorithms and not simply a misalignment of the test 

apparatus. 

Some of the errors seen in the data were common to both sensors. For both the 

3DM-GX1 and the 3DM-GX3, the yaw accuracy tended to be the worst for each type of 

test that was run compared to the roll or the pitch accuracy. Also, both sensors 

experienced discontinuities in the error with the impact testing. The 3DM-GX1 had less 

error but was more likely to maintain an offset after impact, whereas the initial errors for 

the 3DM-GX3 were much larger on impact, upwards of five to ten degrees, but tended to 

decay to zero within a few seconds. 
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Overall, the 3DM-GX1 was more likely to be within the stated  2 degree 

expected accuracy than the 3DM-GX3, both on average and throughout the dynamic 

motions. However, as was shown, certain dynamic motions that may be encountered in 

personal navigation or human motion tracking caused both sensors’ errors to exceed the 

manufacturer’s listed accuracy specification. Though a small portion of the errors may be 

due to the test setup, it is believed that the plots shown are a fair representation of the 

expected accuracies of these sensors through these motions. Since the primary goal of 

this thesis was to develop the test apparatus and methodology and to show that the tests 

worked, not to fully test the MicroStrain sensors for specification compliance, the 

manufacturer was not contacted for information regarding these results. 

E. SUMMARY 

In this chapter, the accuracy analysis plots were presented of the data collected 

using the new test apparatus with the data collection setup described in previous chapters. 

The data were presented such that conclusions regarding the trends of each sensor could 

be analyzed and understood, and so that a simple side-by-side comparison of the two 

sensors could be made. 

The thesis is concluded in the next chapter by summing up what was 

accomplished. Based on the data presented in this chapter, recommendations are made 

regarding the potential use of the 3DM-GX1 and 3DM-GX3 in either personal navigation 

or human motion tracking. Finally, recommendations are made for future work based on 

topics and capabilities introduced in this thesis. 
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VIII. CONCLUSIONS 

The thesis is concluded in this chapter by reviewing what was accomplished and 

showing that the initial goals of the thesis were all met. In addition, some conclusions are 

drawn regarding the “best” sensor for personal navigation and for immersive virtual 

reality training based on the data shown in Chapter VII, the 3DM-GX1 or the 3DM-GX3. 

Finally, topics of future work to expand on the findings of this thesis are presented. 

A. WHAT WAS ACCOMPLISHED 

In this thesis, a method to test the dynamic accuracy of MEMS MARG sensors 

for use in personal navigation or human motion tracking for immersive virtual reality 

training was successfully developed and implemented. A sturdy, low-cost test apparatus 

was designed and built, and a series of tests were developed to mimic certain aspects of 

the dynamic motions expected to be encountered by the sensors in practical applications. 

The test apparatus used an optical encoder to precisely gather “truth” data regarding the 

orientation of the sensor under test, and therefore, accurate and repeatable test data were 

able to be gathered. A data collection system using a National Instruments CompactRIO 

with an FPGA and implementing LabVIEW virtual instruments worked well enough to 

collect and synchronize the necessary data. Post processing and analysis of the data was 

made simple through the creation of a MATLAB GUI. Finally, a series of tests were run 

to confirm the functionality of the test apparatus as well as to characterize the accuracy of 

the MicroStrain 3DM-GX1 and 3DM-GX3 sensors and to identify if either sensor was 

better suited for a particular dynamic application than the other. 

B. THE “BEST” SENSOR 

The data plots in Chapter VII showed that although both sensors met the RMS 

dynamic accuracy specifications most of the time, there were certain motions and certain 

orientations that caused the accuracy to go outside of the bounds. In addition, certain 

dynamic motions caused the error to spike outside of the  2 degree tolerance even 

though the overall RMS accuracy was within tolerances.  
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1. 3DM-GX1 Anomalies and Impact 

The 3DM-GX1 tended to do very well tracking the orientation of the sensor 

through all of the dynamic motion tests, and of the three orientations tested the yaw 

orientation accuracy was the often the worst. Overall, the 3DM-GX1 consistently 

outperformed the 3DM-GX3 in free swinging, arbitrary swinging, and impact tests. Its 

biggest problem was the tendency to drift following dynamic motions, seen clearly in the 

semi-static tests. Additionally, medium and high impact tests introduced discontinuous 

jumps in the error of up to one degree, and this error was maintained through the 

remainder of the test. Whereas the 3DM-GX3 accuracy errors tended to go to zero over 

time, the 3DM-GX1 error grew over time following dynamic motion. For short-term 

windows of data, the GX1 appeared to be accurate in measuring the change in 

orientation.  

The results imply that the 3DM-GX1 would be good at measuring orientation for 

short spurts, but that the drift could cause significant problems in personal navigation or 

motion tracking applications in the long term. However, if the drift were somehow 

removed or compensated for, then this would be an adequate sensor for both of these 

major applications. In addition, depending upon how the yaw calculations were used, a 

significant heading error could also accumulate over time. Finally, the discontinuous 

errors could cause significant problems if used to measure something with significant 

impact, such as a foot sensor for personal navigation. 

2. 3DM-GX3 Anomalies and Impact 

Although the RMS accuracy results were typically within the  2 degree bounds, 

the 3DM-GX3 appeared to perform worse than the 3DM-GX1 when looking at variation 

in the dynamic accuracy of the sensor’s orientation. There was much more variation than 

the 3DM-GX1, and often the data measured did not go all of the way to the peak values 

measured by the encoder, creating a sinusoidal error that was not related to the timing. It 

appeared that the GX3 was filtering data and that the output could not keep up with the 

dynamic motions. For slow dynamic tests, the sensor performed fairly well. However, the 

error consistently grew as the dynamics increased. This was most evident in the semi-
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static tests. When the pendulum arm was drawn to one side, it took a couple of seconds 

for the errors to decay to zero. This was also seen on the impact tests. On impact a large 

(>10 degree) discontinuous error showed up, which gradually died out to zero. 

In addition to the problems keeping up with fast movements, the 3DM-GX3 had 

significant cross-talk between the different orientations. When measuring pitch or roll, 

the reported yaw changed by 10–15 degrees even though the heading of the sensor 

remained constant. The yaw also experienced an anomaly on the semi-static test to the 

left (counter clockwise) in that a nearly 15 degree error occurred at maximum deflection, 

though no similar error was seen when moving the other direction. The anomaly was not 

investigated further due to time constraints. 

Since the data pulled from the 3DM-GX3 in the tested configuration appeared to 

have a long delay when responding to dynamic motions, the configured sensor would not 

be well suited to applications where the orientation was changing rapidly. Since the error 

tended to go to zero over time, it did offer some advantages over the 3DM-GX1 in slow 

moving or semi-static applications. In addition, the problem of cross-talk between yaw 

and either roll or pitch could cause significant heading errors through a normal range of 

dynamic motions in a personal navigation or an immersive virtual reality environment. 

3. Overall Top Choice 

Neither one of the two sensors tested, configured as shown in Chapters II and V, 

would be ideally suited to personal navigation or immersive virtual reality training 

environments by themselves. The test data showed inaccuracies and spikes in the outputs 

that could cause difficulties when integrated into one of those two applications.  

Of the two sensors, the 3DM-GX1 was better suited for both personal navigation 

and immersive virtual reality training because of the improved accuracy in highly 

dynamic motions, though it would still have significant problems. The yaw orientation 

accuracy, the tendency to drift, and the discontinuities in the accuracy on impact are all 

problems that would have to be dealt with as a part of the integration process. A more 

effective solution would be some combination of the two sensors. The 3DM-GX1 could  
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provide accurate short-term orientation information, whereas the 3DM-GX3 would be 

able to provide long-term stationary information and help to remove drift from the 3DM-

GX1. 

C. RECOMMENDED FUTURE WORK 

Although the primary goals that were established were met, there is still much 

work that can be done on this topic. First and foremost would be to remove any accuracy 

errors that were due to the data collection equipment and not the sensor’s measurement. 

The largest source of test error was introduced by the timing, especially attempting to 

resolve the 3DM-GX3 time. For some reason this sensor had much more variability in the 

timing and required much more interaction to attempt to remove the impact of timing 

errors in the data analysis. A more accurate method of resolving the sensor time to the 

encoder time would significantly strengthen the accuracy of the test results and should be 

one of the primary focuses of any follow-on work. 

Another area of work would be to run more tests on the 3DM-GX1 and 3DM-

GX3 in order to more fully characterize the accuracies. Multiple “impact and hold” tests 

in a row, spaced out by a second or two, could be run to more realistically simulate a 

walking motion. Longer tests could be run to determine how far the 3DM-GX1 drifts 

after dynamic motions or to characterize how long it takes for the 3DM-GX3 error to 

return to near zero. Also, other features of the 3DM-GX3 could be enabled to see if any 

other data provided better dynamic accuracy. Finally, some of the interesting anomalies 

could be followed up and investigated more closely, such as the 3DM-GX3 semi-static 

yaw tests or the discontinuities that occur in both sensors’ accuracy on impact. 

Only two sensors made by the same manufacturer were tested, but there are a 

number of MARG sensors made by many different manufacturers that could be tested. 

Future work could focus on using the test apparatus developed in this thesis to test other 

sensors and compare them to one another in a controlled and systematic manner. 

Due to the limitations in generating adequate truth data for angular velocity and 

acceleration noted in Chapter V, only the sensors’ orientation was tested in this thesis. 

Future work could focus on optimally estimating the encoder data using a Weiner or 
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Kalman filter and then again attempting to get the angular velocity and acceleration from 

the filtered encoder data. Alternatively, another source of truth data could be added to the 

test apparatus. A fiber optic gyro or some other accurate gyroscope could be attached to 

the end of the shaft that the pendulum rotates about. This instrumented data would 

immediately provide the angular velocity, and using a combination of these two truth 

sources makes it more likely that an accurate calculation of the acceleration would be 

obtained. Thus, it would be feasible to measure the accuracies of the sensors’ raw outputs 

of angular velocity and acceleration as well as the processed orientation data, providing 

more insight into the capabilities of the MARG sensors under test. 
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APPENDIX A.  LABVIEW DIAGRAMS 

This appendix contains details on many of the LabVIEW virtual instruments that 

were presented in the thesis. In Figures 124–129, the subVIs that were used to interface 

with the MicroStrain sensors via the serial port are shown. This was done in three steps: 

first the command was sent, then the serial record was read, and finally the serial record 

was converted for use by Loop 2 of the target VI. 

 

Figure 124.   SubVI “Send 3DM-G Cmd.vi” Used in 3DM-GX1 Loop 2. 

 

Figure 125.   SubVI “Get Serial Record.vi” Used in 3DM-GX1 Loop 2. 
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Figure 126.   SubVI “Decode 3DM-G Record.vi” Used in 3DM-GX1 Loop 2. 

 

 

Figure 127.   SubVI “Send 3DM-GX3 Cmd.vi” Used in 3DM-GX3 Loop 2. 
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Figure 128.   SubVI “Get 3DM-GX3 Serial Record.vi” Used in 3DM-GX3 Loop 2. 

 

Figure 129.   SubVI “Decode 3DM-GX3 Record.vi” Used in 3DM-GX3 Loop 2. 

 

In Figures 130 and 131, the VI used to pull the 3DM-GX1 data is shown in two 

parts, loop 1 and loop 2. Figure 132 has the modified loop 2 that was used to gather the 

data from the 3DM-GX1 in continuous mode. Finally, two of the other data options that 

were available with the 3DM-GX3 are shown in Figures 133 and 134. 
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Figure 130.   LabVIEW VI for 3DM-GX1, Polled Mode, Loop 1. 
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Figure 131.   LabVIEW VI for 3DM-GX1, Polled Mode, Loop 2. 
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Figure 132.   LabVIEW VI for 3DM-GX1, Continuous Mode, Loop 2. 
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Figure 133.   3DM-GX3, Loop 2, Raw Sensor Measurements Selection. 
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Figure 134.   3DM-GX3, Loop 2, Raw Sensor Measurements and Orientation Matrix. 
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APPENDIX B.  MATLAB CODE 

This appendix contains the primary MATALB code that was used in this thesis. 

First, selected functions from the code that supported the GUI are presented, since not 

every function in MEMS_Test.m contained useful code. After this, each subsequent 

section contains another function that was instrumental in the data analysis portion of the 

thesis. 

A. MEMS_TEST.M, SELECTED FUNCTIONS 

function varargout = MEMS_Test(varargin) 
% MEMS_TEST M-file for MEMS_Test.fig 
%      MEMS_Test should be run from the command line. It opens the GUI 
%      which enables analysis of the encoder, 3DM-GX1, and 3DM-GX3 data 
%      collected by the LabVIEW virtual instrument 
% 
%      There is no other appropriate way to run or call this GUI 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Last Modified by GUIDE v2.5 27-Apr-2010 10:25:22 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @MEMS_Test_OpeningFcn, ... 
                   'gui_OutputFcn',  @MEMS_Test_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before MEMS_Test is made visible. 
function MEMS_Test_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to MEMS_Test (see VARARGIN) 
  
% Choose default command line output for MEMS_Test 
handles.output = hObject; 
  
  
% Update handles structure 
guidata(hObject, handles); 
  
%create a cell variable to contain the name of the variables to save 
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setappdata(handles.Main,'Save_Vars',{}); 
                         
  
% UIWAIT makes MEMS_Test wait for user response (see UIRESUME) 
% uiwait(handles.Main); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = MEMS_Test_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
  
function edit_Encoder_File_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Encoder_File (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_Encoder_File as text 
%        str2double(get(hObject,'String')) returns contents of edit_Encoder_File as a 
double 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
  
% --- Executes on button press in push_Browse_Encoder. 
function push_Browse_Encoder_Callback(hObject, eventdata, handles) 
% hObject    handle to push_Browse_Encoder (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
%this function prompts the user to enter a file for the encoder 
  
current_file = get(handles.edit_Encoder_File,'String'); 
if strcmp(current_file, 'Encoder LabView Data File') == 1 
      [file path] = uigetfile('*.txt', 'Select Encoder Data'); %first time 
else %use the current path at the default location: 
    [file path] = uigetfile('*.txt', 'Select Encoder Data',current_file); 
end 
  
if file == 0 
    %action was canx'd, don't change anything 
    return 
else 
    set(handles.edit_Encoder_File,'String',[path file]); 
end 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
  
function edit_Sensor_File_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Sensor_File (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 



 157

% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_Sensor_File as text 
%        str2double(get(hObject,'String')) returns contents of edit_Sensor_File as a 
double 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
% --- Executes on button press in push_Browse_Sensor. 
function push_Browse_Sensor_Callback(hObject, eventdata, handles) 
% hObject    handle to push_Browse_Sensor (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
%this function prompts the user to enter a file for the sensor 
  
current_file = get(handles.edit_Sensor_File,'String'); 
if strcmp(current_file, 'Sensor LabView Data File') == 1 
      [file path] = uigetfile('*.txt', 'Select Sensor Data'); %first time 
else %use the current path at the default location: 
    [file path] = uigetfile('*.txt', 'Select Sensor Data',current_file); 
end 
  
  
if file == 0 
    %action was canx'd, don't change anything 
    return 
else 
    set(handles.edit_Sensor_File,'String',[path file]); 
end 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
% --- Executes on selection change in pop_Selected_Sensor. 
function pop_Selected_Sensor_Callback(hObject, eventdata, handles) 
% hObject    handle to pop_Selected_Sensor (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns pop_Selected_Sensor contents as cell 
array 
%        contents{get(hObject,'Value')} returns selected item from pop_Selected_Sensor 
  
contents = get(handles.pop_Selected_Sensor,'String'); 
selected_sensor = contents{get(hObject,'Value')}; 
  
%When a sensor is selected, populate the "Sensor_Data_Collected" popup menu 
%with the appropriate values/options (also, clean up the 'calling' popmenu) 
switch selected_sensor 
    case '3DM-GX1' 
        set(handles.pop_Sensor_Data_Collected,'Enable','on'); 
        set(handles.pop_Sensor_Data_Collected,'Value',2); 
        set(handles.pop_Sensor_Data_Collected,'String',... 
            {'Select Sensor Data Pulled';'Stabilized Quaternions & Vectors';'Serial 
Number'}); 
        set(handles.pop_Selected_Sensor,'String',{'3DM-GX1';'3DM-GX3'}); 
        set(handles.pop_Selected_Sensor,'Value',1); 
         
        set(handles.edit_Title_Line,'String','3DM-GX1'); 
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    case '3DM-GX3' 
        set(handles.pop_Sensor_Data_Collected,'Enable','on'); 
        set(handles.pop_Sensor_Data_Collected,'Value',2); 
        set(handles.pop_Sensor_Data_Collected,'String',... 
            {'Select Sensor Data Pulled';'Euler Angles and Rates';'Euler Angles 
Only';'Serial Number'}); 
        set(handles.pop_Selected_Sensor,'String',{'3DM-GX1';'3DM-GX3'}); 
        set(handles.pop_Selected_Sensor,'Value',2); 
         
        set(handles.edit_Title_Line,'String','3DM-GX3'); 
end 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
 
  
% --- Executes on selection change in pop_Sensor_Data_Collected. 
function pop_Sensor_Data_Collected_Callback(hObject, eventdata, handles) 
% hObject    handle to pop_Sensor_Data_Collected (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns pop_Sensor_Data_Collected contents as 
cell array 
%        contents{get(hObject,'Value')} returns selected item from 
pop_Sensor_Data_Collected 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
 
  
% -------------------------------------------------------------------- 
function menu_Quit_Callback(hObject, eventdata, handles) 
% hObject    handle to menu_Quit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
%close the gui 
close 
  
  
  
function edit_Rotation_Threshold_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Rotation_Threshold (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_Rotation_Threshold as text 
%        str2double(get(hObject,'String')) returns contents of edit_Rotation_Threshold as 
a double 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
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% --- Executes during object creation, after setting all properties. 
function edit_Rotation_Threshold_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Rotation_Threshold (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in check_Avg_Encoder_Times. 
function check_Avg_Encoder_Times_Callback(hObject, eventdata, handles) 
% hObject    handle to check_Avg_Encoder_Times (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of check_Avg_Encoder_Times 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
  
% --- Executes on button press in check_Adjust_Sensor_Times. 
function check_Adjust_Sensor_Times_Callback(hObject, eventdata, handles) 
% hObject    handle to check_Adjust_Sensor_Times (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of check_Adjust_Sensor_Times 
  
%only do one type of time fix at a time 
if get(handles.check_Manual_Time_Adjust,'Value') == 1 
    set(handles.check_Manual_Time_Adjust,'Value',0);%uncheck the "Peak Align" time 
adjust" 
else 
    set(handles.check_Manual_Time_Adjust,'Value',1);%check the "Peak Align" time adjust" 
end 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
  
function edit_Zero_Motion_Time_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Zero_Motion_Time (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_Zero_Motion_Time as text 
%        str2double(get(hObject,'String')) returns contents of edit_Zero_Motion_Time as a 
double 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
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set(handles.push_Save,'Enable','off'); 
  
% --- Executes during object creation, after setting all properties. 
function edit_Zero_Motion_Time_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Zero_Motion_Time (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in radio_Pitch. 
function radio_Pitch_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_Pitch (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_Pitch 
  
%only allow 1 selection 
set(handles.radio_Roll,'Value',0); 
set(handles.radio_Pitch,'Value',1); 
set(handles.radio_Yaw,'Value',0); 
  
%preset the plotting selections based on "Pitch" selected 
%1 
set(handles.radio_1_Roll,'Value',0); 
set(handles.radio_1_Pitch,'Value',1); 
set(handles.radio_1_Yaw,'Value',0); 
%2 
set(handles.radio_2_Roll,'Value',0); 
set(handles.radio_2_Pitch,'Value',1); 
set(handles.radio_2_Yaw,'Value',0); 
%error plot 
set(handles.check_Error_Plot_Roll,'Value',0); 
set(handles.check_Error_Plot_Pitch,'Value',1); 
set(handles.check_Error_Plot_Yaw,'Value',0); 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
  
% --- Executes on button press in radio_Yaw. 
function radio_Yaw_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_Yaw (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_Yaw 
  
%only allow 1 selection 
set(handles.radio_Roll,'Value',0); 
set(handles.radio_Pitch,'Value',0); 
set(handles.radio_Yaw,'Value',1); 
  
  
%preset the plotting selections based on "Roll" selected 
%1 
set(handles.radio_1_Roll,'Value',0); 
set(handles.radio_1_Pitch,'Value',0); 
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set(handles.radio_1_Yaw,'Value',1); 
%2 
set(handles.radio_2_Roll,'Value',0); 
set(handles.radio_2_Pitch,'Value',0); 
set(handles.radio_2_Yaw,'Value',1); 
%error plot 
set(handles.check_Error_Plot_Roll,'Value',0); 
set(handles.check_Error_Plot_Pitch,'Value',0); 
set(handles.check_Error_Plot_Yaw,'Value',1); 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
% --- Executes on button press in radio_Roll. 
function radio_Roll_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_Roll (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_Roll 
  
%only allow 1 selection 
set(handles.radio_Roll,'Value',1); 
set(handles.radio_Pitch,'Value',0); 
set(handles.radio_Yaw,'Value',0); 
  
  
%preset the plotting selections based on "Roll" selected 
%1 
set(handles.radio_1_Roll,'Value',1); 
set(handles.radio_1_Pitch,'Value',0); 
set(handles.radio_1_Yaw,'Value',0); 
%2 
set(handles.radio_2_Roll,'Value',1); 
set(handles.radio_2_Pitch,'Value',0); 
set(handles.radio_2_Yaw,'Value',0); 
%error plot 
set(handles.check_Error_Plot_Roll,'Value',1); 
set(handles.check_Error_Plot_Pitch,'Value',0); 
set(handles.check_Error_Plot_Yaw,'Value',0); 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
 
 
 
  
% --- Executes on button press in push_Run. 
function push_Run_Callback(hObject, eventdata, handles) 
% hObject    handle to push_Run (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% This function pulls the files from the GUI, then opens them in accordance 
% with the GUI's settings. The final data are stored to the appdata of the 
% background, MEMS_Test 
  
% The data stored to the appdata are: 
% Time_Encoder = [CPU Time, common elapsed time, local delta time] 
% Time_Sensor = [CPU Time, common elapsed time, local delta time] 
% Encoder_Angle = [elapsed time, deg, rad] 
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% Encoder_TSPI_w = [elapsed time, deg/s, rad/s] 
% Encoder_TSPI_alpha = [elapsed time, deg/s^2, rad/s^2] 
% Sensor_RPY_rad = [elapsed time, roll, pitch, yaw]; in radians 
% Sensor_RPY_deg = [elapsed time, roll, pitch, yaw]; in degrees 
  
% FIRST GET THE FILES AND ENSURE THEY EXIST: 
en_filename = get(handles.edit_Encoder_File,'String'); 
sen_filename = get(handles.edit_Sensor_File,'String'); 
  
if exist(en_filename)==0 || exist(sen_filename)==0  
    beep 
    errordlg({'Invalid File Name';'One or both of the selected files does not exist';'Fix 
it!'},'File Error!') 
    return 
end 
  
%make sure the file names are not the exact same 
if strcmp(en_filename, sen_filename) ==  1 
    beep 
    errordlg({'Invalid File Name';'You can''t have the same file for the encoder and 
sensor';'Fix it!'},'File Error!') 
    return 
end 
  
% NEXT MAKE SURE A SENSOR AND DATA TYPE HAVE BEEN SELECTED 
sensor_string = get(handles.pop_Selected_Sensor,'String'); 
sensor = sensor_string{get(handles.pop_Selected_Sensor,'Value')}; 
sensor_string = get(handles.pop_Sensor_Data_Collected,'String'); 
data_selection = sensor_string{get(handles.pop_Sensor_Data_Collected,'Value')}; 
  
if strcmp(sensor,'Select MEMS Sensor')==1 || ... 
        strcmp(data_selection,'Select Sensor Data Pulled')==1 
    beep 
    errordlg({'Invalid Sensor Selection';'Make sure you have selected a sensor';... 
        'and the type of data you want from it!'},'Sensor Selection Error') 
    return 
end 
  
%import the variables to be saved (& added to) 
Save_Vars = getappdata(handles.Main,'Save_Vars'); 
  
%% With all of the settings good, begin the real work: 
c = clock; 
m = msgbox({'Began Execution 
at:',[sprintf('%2.0f',c(4)),':',sprintf('%2.0f',c(5)),':',sprintf('%2.1f',c(6))]},'Execut
ing'); 
  
% Set some output params to 'disabled' until they are updated: 
set(handles.text_Avg_Error,'Enable','off'); 
set(handles.text_Time_Align_Error,'Enable','off'); 
  
% NEXT GET ALL OF THE SETUP PARAMETERS FROM THE GUI 
% Encoder Parameters 
block_size = str2num(get(handles.edit_Encoder_Block_Size,'String')); 
Fs = str2num(get(handles.edit_Encoder_Sampling_Freq,'String')); 
encoder_frame_period = 1/Fs; 
threshold = str2num(get(handles.edit_Rotation_Threshold,'String')); 
r_pend = str2num(get(handles.edit_Rotation_Radius,'String')); 
  
% Sensor Parameters 
%(these indicate what the encoder angle represents on the sensor) 
roll_checked = get(handles.radio_Roll,'Value'); 
pitch_checked = get(handles.radio_Pitch,'Value'); 
yaw_checked = get(handles.radio_Yaw,'Value'); 
if roll_checked == 1 
    sensor_orientation = 'Roll'; 
elseif pitch_checked==1 
    sensor_orientation = 'Pitch'; 
else  
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    sensor_orientation = 'Yaw'; 
end 
  
sensor_peak_time_align_checked = get(handles.check_Adjust_Sensor_Times,'Value'); 
if sensor_peak_time_align_checked == 1 
    sensor_peak_time_align_checked = true; 
else 
    sensor_peak_time_align_checked = false; 
end 
  
%Analysis Parameters 
steady_state =  str2num(get(handles.edit_Zero_Motion_Time,'String')); %assumes first X 
seconds of file are starting point of sensor 
  
  
%% READ IN THE ENCODER FILE: 
[time_en encoder_angle] = 
Read_Encoder_Data_File(en_filename,block_size,encoder_frame_period); 
  
%% READ IN THE SENSOR DATA 
raw_data = textread(sen_filename,'%f'); %read as double array 
  
%Note: all sensor data files are arranged into 20 columns of data. 
raw_reshaped = reshape(raw_data,20,length(raw_data)/20)'; 
  
%find any duplicate lines and remove them: 
t = raw_reshaped(:,1); %CPU Time is the first column 
t(:,2) = [0; t(2:end,1)-t(1:end-1,1)]; 
non_zero_i = t(:,2)~=zeros(length(t(:,2)),1); 
time_3DM = t(non_zero_i,:); 
  
%build a new data array with no duplicate lines: 
data = raw_reshaped(non_zero_i,:); 
  
%set up an elapsed time & move the time delta column: 
time_3DM(:,2) = time_3DM(:,1)-time_3DM(1,1).*ones(length(time_3DM),1); %elapsed t 
time_3DM(:,3) = [0; time_3DM(2:end,1)-time_3DM(1:end-1,1)]; %delta t         
                 
  
%Note: the sensor data read in will vary depending on the selected data. It 
%will also vary for sensor types 
switch sensor 
    case '3DM-GX1' 
        %For the -GX1, pull the appropriate data: 
        switch data_selection 
            case 'Stabilized Quaternions & Vectors' 
                %Break out the data by type: 
                quat = data(:,2:5); %quaternions 
                mag = data(:,6:8); %magnetic field (gauss) 
                accel = data(:,9:11); %acceleration (g) 
                angr = data(:,12:14); %angular rate (rad/s) 
                tick_time = data(:,15); 
  
                %Convert Quaternions to Roll/Pitch/Yaw 
                [rpy_rad rpy_deg] = quat2rpy(quat); 
                 
                %scale the roll term by -1, since the pendulum data and +/- 
                %roll convention are opposite: 
                rpy_rad(:,1) = -1.*rpy_rad(:,1); 
                rpy_deg(:,1) = -1.*rpy_deg(:,1); 
                 
            case 'Serial Number' 
                errordlg('Not Yet Configured') 
                return 
                %pull these 
            otherwise 
                errordlg('Internal Code Error -- Invalid Data Selection Allowed') 
                return 
        end %switch data_selection 
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    case '3DM-GX3' 
        %For the -GX3, pull the appropriate data: 
        switch data_selection 
            case 'Euler Angles and Rates' 
                rpy_rad(:,1:3) = data(:,2:4); %roll,pitch,yaw 
                rpy_deg = rpy_rad.*180/pi; 
                angr = data(:,5:7); %angular rates (rad/s) 
                tick_time = data(:,8); 
                 
                %scale the roll term by -1, since the pendulum data and +/- 
                %roll convention are opposite: 
                rpy_rad(:,1) = -1.*rpy_rad(:,1); 
                rpy_deg(:,1) = -1.*rpy_deg(:,1); 
                 
            case 'Euler Angles Only' 
                rpy_rad(:,1:3) = data(:,2:4); %roll,pitch,yaw 
                rpy_deg = rpy_rad.*180/pi; 
                tick_time = data(:,5); 
                 
                %scale the roll term by -1, since the pendulum data and +/- 
                %roll convention are opposite: 
                rpy_rad(:,1) = -1.*rpy_rad(:,1); 
                rpy_deg(:,1) = -1.*rpy_deg(:,1); 
                 
            case 'Serial Number' 
                errordlg('Not Yet Configured') 
                return 
                %pull these 
            otherwise 
                errordlg('Internal Code Error -- Invalid Data Selection Allowed') 
                return 
        end %switch data_selection 
end %switch sensor 
  
%% SYNC THE TIMES TO A COMMON ELAPSED TIME: 
if time_en(1,1)<= time_3DM(1,1) 
    sync_index = find(time_en(:,1)> time_3DM(1,1),1,'first'); 
    sync_time = time_en(sync_index,1); 
else 
    sync_index = find(time_3DM(:,1)> time_en(1,1),1,'first'); 
    sync_time = time_3DM(sync_index,1); 
end 
  
time_en(:,2) = time_en(:,1)-sync_time*ones(length(time_en),1); %common elapsed time 
time_3DM(:,2) = time_3DM(:,1)-sync_time*ones(length(time_3DM),1); %common elapsed time 
  
%% IF SELECTED, THRESHOLD THE ENCODER DATA TO THE SELECTED VALUE 
if get(handles.check_Use_Max_Rotation_Thresh,'Value')==1 
    [new_time_en new_encoder_angle] = 
Encoder_Threshold(time_en,encoder_angle,threshold,Fs); %sets max rotation to 'threshold' 
deg/sec 
    clear encoder_angle time_en 
  
    time_en = new_time_en; 
    encoder_angle = new_encoder_angle; 
  
    clear new_time new_encoder_angle 
end 
  
  
%% CONVERT ENCODER DATA TO TSPI 
%NOTE: This also adjusts the encoder start position to Zero Degrees. 
[encoder_angle,w,ang_accel,time_en,accel_xyz,g] = ... 
    encoder_TSPI(encoder_angle, time_en, r_pend, steady_state,sensor_orientation); 
%accel_xyz retuns the TSPI for x, y, & z body accelerations in DEGREES ONLY 
  
%% CALCULATE THE FFT OF THE ENCODER ANGLE, ANGULAR VELOCITY, AND ANG. ACCEL 
fft_en = fft(encoder_angle(:,2)); 
fft_w = fft(w(:,2)); 
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fft_alpha = fft(ang_accel(:,2)); 
  
%% RUN THE ACCURACY ANALYSIS & SAVE RESULTS TO THE GUI'S APPDATA 
%NOTE: Different Accuracy Analysis will be done for the different sensors 
%therefore, the APPDATA may not contain all of the variables each time 
  
%Identify the steady state time index for the sensor data 
tare_index = find(time_3DM(:,2)>steady_state, 1,'first'); 
  
switch sensor 
    case '3DM-GX1' 
        switch data_selection 
            case 'Stabilized Quaternions & Vectors' 
                %Identify which axis will be tested (this will result in a 
                %lot of extra/duplicate code, but it will work) 
                switch sensor_orientation 
                    case 'Roll' 
                        %Identify the initial orientation error 
                        setup_roll_err = median([rpy_deg(1:tare_index,1), 
rpy_rad(1:tare_index,1)]); %[deg rad] 
                         
                        if sensor_peak_time_align_checked 
                            % Adjust Microstrain Sensor Time To Account for Misalignment 
w/ cRIO 
                            %'Fix' the sensor time by lining it up with the encoder peaks  
                            [time_3DM time_error] = sensor_time_align(time_en, time_3DM, 
encoder_angle, rpy_deg,sensor_orientation); 
                            set(handles.text_Time_Align_Error,'Enable','on');                             
                        else 
                            %manually adjust by the time input on the GUI 
                            time_error = 
str2num(get(handles.edit_Manual_Time_Adjust,'String')).*.001; %convert to milliseconds 
                            time_3DM(:,1:2) = time_3DM(:,1:2) - time_error; 
                            set(handles.text_Time_Align_Error,'Enable','on'); 
                        end 
                         
                        %interpolate the encoder data to the sensor times 
                        encoder_interp(:,2) = 
interp1(time_en(:,2),encoder_angle(:,2),time_3DM(:,2)); %degree, linear interp 
                        encoder_interp(:,3) = 
interp1(time_en(:,2),encoder_angle(:,3),time_3DM(:,2)); %rad, linear interp 
                         
                        %replace any NaN with zeros 
                        encoder_interp(isnan(encoder_interp)) = 0; 
                         
                        %adjust the appropriate rpy column to account for initial 
alignment errors  
                        adjusted_rpy_deg = rpy_deg; 
                        adjusted_rpy_rad = rpy_rad; 
                        adjusted_rpy_deg(:,1) = rpy_deg(:,1) - setup_roll_err(1,1); 
                        adjusted_rpy_rad(:,1) = rpy_rad(:,1) - setup_roll_err(1,2); 
                         
                        %crop the data to start at common elapsed time = 0, 
                        index_pos_time = time_3DM(:,2)>=0; 
                        %then take the difference/calculate error 
                        roll_error = [time_3DM(index_pos_time,2), ... 
                            adjusted_rpy_deg(index_pos_time,1) - 
encoder_interp(index_pos_time,2),... 
                            adjusted_rpy_rad(index_pos_time,1) - 
encoder_interp(index_pos_time,3)]; 
                         
                        %update the screen data: (only count the error from after the 
'still' time)  
                        set(handles.text_Avg_Error,'Enable','on'); 
                        
set(handles.text_Avg_Error,'String',num2str(sqrt(mean(roll_error(tare_index:end,2).^2))))
; 
                        set(handles.text_Time_Align_Error,'String',num2str(time_error)); 
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                        %update the appdata 
                        setappdata(handles.Main,'Error_Roll',roll_error); 
                        setappdata(handles.Main,'Adjusted_rpy_deg',adjusted_rpy_deg); 
                        setappdata(handles.Main,'Adjusted_rpy_rad',adjusted_rpy_rad); 
                        setappdata(handles.Main,'Interpolated_Encoder',encoder_interp); 
                         
                        %update the save variable 
                        Save_Vars{end+1} = 'Error_Roll'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_deg'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_rad'; 
                        Save_Vars{end+1} = 'Interpolated_Encoder'; 
                    case 'Pitch' 
                        %Identify the initial orientation error 
                        setup_pitch_err = median([rpy_deg(1:tare_index,2), 
rpy_rad(1:tare_index,2)]); %[deg rad] 
                         
                        if sensor_peak_time_align_checked 
                            % Adjust Microstrain Sensor Time To Account for Misalignment 
w/ cRIO 
                            %'Fix' the sensor time by lining it up with the encoder peaks  
                            [time_3DM time_error] = sensor_time_align(time_en, time_3DM, 
encoder_angle, rpy_deg,sensor_orientation); 
                            set(handles.text_Time_Align_Error,'Enable','on');                             
                        else 
                            %manually adjust by the time input on the GUI 
                            time_error = 
str2num(get(handles.edit_Manual_Time_Adjust,'String')).*.001; %convert to milliseconds 
                            time_3DM(:,1:2) = time_3DM(:,1:2) - time_error; 
                            set(handles.text_Time_Align_Error,'Enable','on'); 
                        end 
                         
                        %interpolate the encoder data to the sensor times 
                        encoder_interp(:,2) = 
interp1(time_en(:,2),encoder_angle(:,2),time_3DM(:,2)); %degree, linear interp 
                        encoder_interp(:,3) = 
interp1(time_en(:,2),encoder_angle(:,3),time_3DM(:,2)); %rad, linear interp 
                         
                        %replace any NaN with zeros 
                        encoder_interp(isnan(encoder_interp)) = 0; 
                         
                        %adjust the appropriate rpy column to account for initial 
alignment errors  
                        adjusted_rpy_deg = rpy_deg; 
                        adjusted_rpy_rad = rpy_rad; 
                        adjusted_rpy_deg(:,2) = rpy_deg(:,2) - setup_pitch_err(1,1); 
                        adjusted_rpy_rad(:,2) = rpy_rad(:,2) - setup_pitch_err(1,2); 
                         
                        %crop the data to start at common elapsed time = 0, 
                        index_pos_time = time_3DM(:,2)>=0; 
                        %then take the difference/calculate error 
                        pitch_error = [time_3DM(index_pos_time,2), ... 
                            adjusted_rpy_deg(index_pos_time,2) - 
encoder_interp(index_pos_time,2),... 
                            adjusted_rpy_rad(index_pos_time,2) - 
encoder_interp(index_pos_time,3)]; 
                         
                        %update the screen data: (only count the error from after the 
'still' time)  
                        set(handles.text_Avg_Error,'Enable','on'); 
                        
set(handles.text_Avg_Error,'String',num2str(sqrt(mean(pitch_error(tare_index:end,2).^2)))
); 
                        set(handles.text_Time_Align_Error,'String',num2str(time_error)); 
                         
                        %update the appdata 
                        setappdata(handles.Main,'Error_Pitch',pitch_error); 
                        setappdata(handles.Main,'Adjusted_rpy_deg',adjusted_rpy_deg); 
                        setappdata(handles.Main,'Adjusted_rpy_rad',adjusted_rpy_rad); 
                        setappdata(handles.Main,'Interpolated_Encoder',encoder_interp); 
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                        %update the save variable 
                        Save_Vars{end+1} = 'Error_Pitch'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_deg'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_rad'; 
                        Save_Vars{end+1} = 'Interpolated_Encoder'; 
                                                 
                    case 'Yaw' 
                        %Identify the initial orientation error 
                        setup_yaw_err = median([rpy_deg(1:tare_index,3), 
rpy_rad(1:tare_index,3)]); %[deg rad] 
                         
                        if sensor_peak_time_align_checked 
                            % Adjust Microstrain Sensor Time To Account for Misalignment 
w/ cRIO 
                            %'Fix' the sensor time by lining it up with the encoder peaks  
                            [time_3DM time_error] = sensor_time_align(time_en, time_3DM, 
encoder_angle, rpy_deg,sensor_orientation); 
                            set(handles.text_Time_Align_Error,'Enable','on');                             
                        else 
                            %manually adjust by the time input on the GUI 
                            time_error = 
str2num(get(handles.edit_Manual_Time_Adjust,'String')).*.001; %convert to milliseconds 
                            time_3DM(:,1:2) = time_3DM(:,1:2) - time_error; 
                            set(handles.text_Time_Align_Error,'Enable','on'); 
                        end 
                         
                        %interpolate the encoder data to the sensor times 
                        encoder_interp(:,2) = 
interp1(time_en(:,2),encoder_angle(:,2),time_3DM(:,2)); %degree, linear interp 
                        encoder_interp(:,3) = 
interp1(time_en(:,2),encoder_angle(:,3),time_3DM(:,2)); %rad, linear interp 
                         
                        %replace any NaN with zeros 
                        encoder_interp(isnan(encoder_interp)) = 0; 
                         
                        %adjust the appropriate rpy column to account for initial 
alignment errors  
                        adjusted_rpy_deg = rpy_deg; 
                        adjusted_rpy_rad = rpy_rad; 
                        adjusted_rpy_deg(:,3) = rpy_deg(:,3) - setup_yaw_err(1,1); 
                        adjusted_rpy_rad(:,3) = rpy_rad(:,3) - setup_yaw_err(1,2); 
                         
                        %crop the data to start at common elapsed time = 0, 
                        index_pos_time = time_3DM(:,2)>=0; 
                        %then take the difference/calculate error 
                        yaw_error = [time_3DM(index_pos_time,2), ... 
                            adjusted_rpy_deg(index_pos_time,3) - 
encoder_interp(index_pos_time,2),... 
                            adjusted_rpy_rad(index_pos_time,3) - 
encoder_interp(index_pos_time,3)]; 
                         
                        %update the screen data: (only count the error from after the 
'still' time)  
                        set(handles.text_Avg_Error,'Enable','on'); 
                        
set(handles.text_Avg_Error,'String',num2str(sqrt(mean(yaw_error(tare_index:end,2).^2)))); 
                        set(handles.text_Time_Align_Error,'String',num2str(time_error)); 
                         
                        %update the appdata 
                        setappdata(handles.Main,'Error_Yaw',yaw_error); 
                        setappdata(handles.Main,'Adjusted_rpy_deg',adjusted_rpy_deg); 
                        setappdata(handles.Main,'Adjusted_rpy_rad',adjusted_rpy_rad); 
                        setappdata(handles.Main,'Interpolated_Encoder',encoder_interp); 
                         
                        %update the save variable 
                        Save_Vars{end+1} = 'Error_Yaw'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_deg'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_rad'; 
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                        Save_Vars{end+1} = 'Interpolated_Encoder'; 
                end %switch sensor_orientation 
                 
                % Update common appdata for this set of data: 
                setappdata(handles.Main,'Sensor_rpy_deg',rpy_deg); 
                setappdata(handles.Main,'Sensor_rpy_rad',rpy_rad); 
                setappdata(handles.Main,'Sensor_angr',angr); 
                setappdata(handles.Main,'Tare_Index',tare_index); 
                 
                %update the save variable 
                Save_Vars{end+1} = 'Sensor_rpy_deg'; 
                Save_Vars{end+1} = 'Sensor_rpy_rad'; 
                Save_Vars{end+1} = 'Sensor_angr'; 
                Save_Vars{end+1} = 'Tare_Index'; 
                 
            case 'Serial Number' 
                beep 
                errordlg('Not Yet Configured') 
                return 
                %pull these 
            otherwise 
                errordlg('Internal Code Error -- Invalid Data Selection Allowed') 
                return 
        end %switch data_selection 
         
    case '3DM-GX3' 
        %For the -GX3, analyze the appropriate data: 
        switch data_selection 
            case 'Euler Angles and Rates' 
                %Identify which axis will be tested 
                switch sensor_orientation 
                    case 'Roll' 
                        %Identify the initial orientation error 
                        setup_roll_err = median([rpy_deg(1:tare_index,1), 
rpy_rad(1:tare_index,1)]); %[deg rad] 
                         
                        if sensor_peak_time_align_checked 
                            % Adjust Microstrain Sensor Time To Account for Misalignment 
w/ cRIO 
                            %'Fix' the sensor time by lining it up with the encoder peaks  
                            [time_3DM time_error] = sensor_time_align(time_en, time_3DM, 
encoder_angle, rpy_deg,sensor_orientation); 
                            set(handles.text_Time_Align_Error,'Enable','on');                             
                        else 
                            %manually adjust by the time input on the GUI 
                            time_error = 
str2num(get(handles.edit_Manual_Time_Adjust,'String')).*.001; %convert to milliseconds 
                            time_3DM(:,1:2) = time_3DM(:,1:2) - time_error; 
                            set(handles.text_Time_Align_Error,'Enable','on'); 
                        end 
                         
                        %interpolate the encoder data to the sensor times 
                        encoder_interp(:,2) = 
interp1(time_en(:,2),encoder_angle(:,2),time_3DM(:,2)); %degree, linear interp 
                        encoder_interp(:,3) = 
interp1(time_en(:,2),encoder_angle(:,3),time_3DM(:,2)); %rad, linear interp 
                         
                        %replace any NaN with zeros 
                        encoder_interp(isnan(encoder_interp)) = 0; 
                         
                        %adjust the appropriate rpy column to account for initial 
alignment errors  
                        adjusted_rpy_deg = rpy_deg; 
                        adjusted_rpy_rad = rpy_rad; 
                        adjusted_rpy_deg(:,1) = rpy_deg(:,1) - setup_roll_err(1,1); 
                        adjusted_rpy_rad(:,1) = rpy_rad(:,1) - setup_roll_err(1,2); 
                         
                        %crop the data to start at common elapsed time = 0, 
                        index_pos_time = time_3DM(:,2)>=0; 
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                        %then take the difference/calculate error 
                        roll_error = [time_3DM(index_pos_time,2), ... 
                            adjusted_rpy_deg(index_pos_time,1) - 
encoder_interp(index_pos_time,2),... 
                            adjusted_rpy_rad(index_pos_time,1) - 
encoder_interp(index_pos_time,3)]; 
                         
                        %update the screen data: (only count the error from after the 
'still' time)  
                        set(handles.text_Avg_Error,'Enable','on'); 
                        
set(handles.text_Avg_Error,'String',num2str(sqrt(mean(roll_error(tare_index:end,2).^2))))
; 
                        set(handles.text_Time_Align_Error,'String',num2str(time_error)); 
                         
                        %update the appdata 
                        setappdata(handles.Main,'Error_Roll',roll_error); 
                        setappdata(handles.Main,'Adjusted_rpy_deg',adjusted_rpy_deg); 
                        setappdata(handles.Main,'Adjusted_rpy_rad',adjusted_rpy_rad); 
                        setappdata(handles.Main,'Interpolated_Encoder',encoder_interp); 
                         
                        %update the save variable 
                        Save_Vars{end+1} = 'Error_Roll'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_deg'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_rad'; 
                        Save_Vars{end+1} = 'Interpolated_Encoder'; 
                         
                    case 'Pitch' 
                        %Identify the initial orientation error 
                        setup_pitch_err = median([rpy_deg(1:tare_index,2), 
rpy_rad(1:tare_index,2)]); %[deg rad] 
                         
                        if sensor_peak_time_align_checked 
                            % Adjust Microstrain Sensor Time To Account for Misalignment 
w/ cRIO 
                            %'Fix' the sensor time by lining it up with the encoder peaks  
                            [time_3DM time_error] = sensor_time_align(time_en, time_3DM, 
encoder_angle, rpy_deg, sensor_orientation); 
                            set(handles.text_Time_Align_Error,'Enable','on');                             
                        else 
                            %manually adjust by the time input on the GUI 
                            time_error = 
str2num(get(handles.edit_Manual_Time_Adjust,'String')).*.001; %convert to milliseconds 
                            time_3DM(:,1:2) = time_3DM(:,1:2) - time_error; 
                            set(handles.text_Time_Align_Error,'Enable','on'); 
                        end 
                         
                        %interpolate the encoder data to the sensor times 
                        encoder_interp(:,2) = 
interp1(time_en(:,2),encoder_angle(:,2),time_3DM(:,2)); %degree, linear interp 
                        encoder_interp(:,3) = 
interp1(time_en(:,2),encoder_angle(:,3),time_3DM(:,2)); %rad, linear interp 
                         
                        %replace any NaN with zeros 
                        encoder_interp(isnan(encoder_interp)) = 0; 
                         
                        %adjust the appropriate rpy column to account for initial 
alignment errors  
                        adjusted_rpy_deg = rpy_deg; 
                        adjusted_rpy_rad = rpy_rad; 
                        adjusted_rpy_deg(:,2) = rpy_deg(:,2) - setup_pitch_err(1,1); 
                        adjusted_rpy_rad(:,2) = rpy_rad(:,2) - setup_pitch_err(1,2); 
                         
                        %crop the data to start at common elapsed time = 0, 
                        index_pos_time = time_3DM(:,2)>=0; 
                        %then take the difference/calculate error 
                        pitch_error = [time_3DM(index_pos_time,2), ... 
                            adjusted_rpy_deg(index_pos_time,2) - 
encoder_interp(index_pos_time,2),... 
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                            adjusted_rpy_rad(index_pos_time,2) - 
encoder_interp(index_pos_time,3)]; 
                         
                        %update the screen data: (only count the error from after the 
'still' time)  
                        set(handles.text_Avg_Error,'Enable','on'); 
                        
set(handles.text_Avg_Error,'String',num2str(sqrt(mean(pitch_error(tare_index:end,2).^2)))
); 
                        set(handles.text_Time_Align_Error,'String',num2str(time_error)); 
                         
                        %update the appdata 
                        setappdata(handles.Main,'Error_Pitch',pitch_error); 
                        setappdata(handles.Main,'Adjusted_rpy_deg',adjusted_rpy_deg); 
                        setappdata(handles.Main,'Adjusted_rpy_rad',adjusted_rpy_rad); 
                        setappdata(handles.Main,'Interpolated_Encoder',encoder_interp); 
                         
                        %update the save variable 
                        Save_Vars{end+1} = 'Error_Pitch'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_deg'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_rad'; 
                        Save_Vars{end+1} = 'Interpolated_Encoder'; 
                                                 
                    case 'Yaw' 
                        %Identify the initial orientation error 
                        setup_yaw_err = median([rpy_deg(1:tare_index,3), 
rpy_rad(1:tare_index,3)]); %[deg rad] 
                         
                        if sensor_peak_time_align_checked 
                            % Adjust Microstrain Sensor Time To Account for Misalignment 
w/ cRIO 
                            %'Fix' the sensor time by lining it up with the encoder peaks  
                            [time_3DM time_error] = sensor_time_align(time_en, time_3DM, 
encoder_angle, rpy_deg,sensor_orientation); 
                            set(handles.text_Time_Align_Error,'Enable','on');                             
                        else 
                            %manually adjust by the time input on the GUI 
                            time_error = 
str2num(get(handles.edit_Manual_Time_Adjust,'String')).*.001; %convert to milliseconds 
                            time_3DM(:,1:2) = time_3DM(:,1:2) - time_error; 
                            set(handles.text_Time_Align_Error,'Enable','on'); 
                        end 
                         
                        %interpolate the encoder data to the sensor times 
                        encoder_interp(:,2) = 
interp1(time_en(:,2),encoder_angle(:,2),time_3DM(:,2)); %degree, linear interp 
                        encoder_interp(:,3) = 
interp1(time_en(:,2),encoder_angle(:,3),time_3DM(:,2)); %rad, linear interp 
                         
                        %replace any NaN with zeros 
                        encoder_interp(isnan(encoder_interp)) = 0; 
                         
                        %adjust the appropriate rpy column to account for initial 
alignment errors  
                        adjusted_rpy_deg = rpy_deg; 
                        adjusted_rpy_rad = rpy_rad; 
                        adjusted_rpy_deg(:,3) = rpy_deg(:,3) - setup_yaw_err(1,1); 
                        adjusted_rpy_rad(:,3) = rpy_rad(:,3) - setup_yaw_err(1,2); 
                         
                        %crop the data to start at common elapsed time = 0, 
                        index_pos_time = time_3DM(:,2)>=0; 
                        %then take the difference/calculate error 
                        yaw_error = [time_3DM(index_pos_time,2), ... 
                            adjusted_rpy_deg(index_pos_time,3) - 
encoder_interp(index_pos_time,2),... 
                            adjusted_rpy_rad(index_pos_time,3) - 
encoder_interp(index_pos_time,3)]; 
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                        %update the screen data: (only count the error from after the 
'still' time)  
                        set(handles.text_Avg_Error,'Enable','on'); 
                        
set(handles.text_Avg_Error,'String',num2str(sqrt(mean(yaw_error(tare_index:end,2).^2)))); 
                        set(handles.text_Time_Align_Error,'String',num2str(time_error)); 
                         
                        %update the appdata 
                        setappdata(handles.Main,'Error_Yaw',yaw_error); 
                        setappdata(handles.Main,'Adjusted_rpy_deg',adjusted_rpy_deg); 
                        setappdata(handles.Main,'Adjusted_rpy_rad',adjusted_rpy_rad); 
                        setappdata(handles.Main,'Interpolated_Encoder',encoder_interp); 
                         
                        %update the save variable 
                        Save_Vars{end+1} = 'Error_Yaw'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_deg'; 
                        Save_Vars{end+1} = 'Adjusted_rpy_rad'; 
                        Save_Vars{end+1} = 'Interpolated_Encoder'; 
                end %switch sensor_orientation 
                 
                % Update common appdata for this set of data: 
                setappdata(handles.Main,'Sensor_rpy_deg',rpy_deg); 
                setappdata(handles.Main,'Sensor_rpy_rad',rpy_rad); 
                setappdata(handles.Main,'Sensor_angr',angr); 
                setappdata(handles.Main,'Tare_Index',tare_index); 
                 
                %update the save variable 
                Save_Vars{end+1} = 'Sensor_rpy_deg'; 
                Save_Vars{end+1} = 'Sensor_rpy_rad'; 
                Save_Vars{end+1} = 'Sensor_angr'; 
                Save_Vars{end+1} = 'Tare_Index'; 
                 
            case 'Euler Angles Only' 
                beep 
                errordlg('Not Yet Configured') 
                return 
                %pull these 
            case 'Serial Number' 
                beep 
                errordlg('Not Yet Configured') 
                return 
                %pull these 
            otherwise 
                errordlg('Internal Code Error -- Invalid Data Selection Allowed') 
                return 
        end %switch data_selection 
end %case '3DM-GX3' 
  
%% SET APPDATA FOR THE COMMON THINGS & UPDATE THE VARIABLES TO BE SAVED 
setappdata(handles.Main,'Time_Encoder',time_en); 
setappdata(handles.Main,'Time_Sensor',time_3DM); 
setappdata(handles.Main,'Encoder_Angle',encoder_angle); 
setappdata(handles.Main,'Encoder_TSPI_w',w); 
setappdata(handles.Main,'Encoder_TSPI_alpha',ang_accel); 
setappdata(handles.Main,'FFT_Data',[fft_en fft_w fft_alpha]); 
  
%update the save variable 
Save_Vars{end+1} = 'Time_Encoder'; 
Save_Vars{end+1} = 'Time_Sensor'; 
Save_Vars{end+1} = 'Encoder_Angle'; 
Save_Vars{end+1} = 'Encoder_TSPI_w'; 
Save_Vars{end+1} = 'Encoder_TSPI_alpha'; 
Save_Vars{end+1} = 'FFT_Data'; 
  
%update the save variable in the appdata 
setappdata(handles.Main,'Save_Vars',Save_Vars); 
  
  
%% UPDATE THE SCREEN INDICATORS TO BE "GREEN" 
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set(handles.text_Data_Updated,'BackgroundColor',[228/256,240/256,230/256]); 
set(handles.text_Data_Updated,'ForegroundColor',[0,127/256,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Updated';''}); 
%Allow saving  
set(handles.push_Save,'Enable','on'); 
  
% Enable the plotting Section: 
set(handles.panel_Figures,'Visible','on'); 
  
% Close the msgbox that told the user it was working 
if ishandle(m)~= 0 
    close(m) 
end 
  
%this loads a wav file to be played if everything executes properly 
finish_sound = wavread('r2d2wst1.wav'); 
wavplay(finish_sound,11000); 
  
  
% --- Executes on button press in radio_2_Pitch. 
function radio_2_Pitch_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_2_Pitch (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_2_Pitch 
  
%only allow 1 selection 
set(handles.radio_2_Roll,'Value',0); 
set(handles.radio_2_Pitch,'Value',1); 
set(handles.radio_2_Yaw,'Value',0); 
  
  
% --- Executes on button press in radio_2_Yaw. 
function radio_2_Yaw_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_2_Yaw (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_2_Yaw 
  
%only allow 1 selection 
set(handles.radio_2_Roll,'Value',0); 
set(handles.radio_2_Pitch,'Value',0); 
set(handles.radio_2_Yaw,'Value',1); 
  
  
% --- Executes on button press in radio_2_Roll. 
function radio_2_Roll_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_2_Roll (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_2_Roll 
  
%only allow 1 selection 
set(handles.radio_2_Roll,'Value',1); 
set(handles.radio_2_Pitch,'Value',0); 
set(handles.radio_2_Yaw,'Value',0); 
  
  
  
% --- Executes on button press in radio_1_Pitch. 
function radio_1_Pitch_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_1_Pitch (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_1_Pitch 
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%only allow 1 selection 
set(handles.radio_1_Roll,'Value',0); 
set(handles.radio_1_Pitch,'Value',1); 
set(handles.radio_1_Yaw,'Value',0); 
  
  
% --- Executes on button press in radio_1_Yaw. 
function radio_1_Yaw_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_1_Yaw (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_1_Yaw 
  
%only allow 1 selection 
set(handles.radio_1_Roll,'Value',0); 
set(handles.radio_1_Pitch,'Value',0); 
set(handles.radio_1_Yaw,'Value',1); 
  
  
% --- Executes on button press in radio_1_Roll. 
function radio_1_Roll_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_1_Roll (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_1_Roll 
  
%only allow 1 selection 
set(handles.radio_1_Roll,'Value',1); 
set(handles.radio_1_Pitch,'Value',0); 
set(handles.radio_1_Yaw,'Value',0); 
  
  
% --- Executes on button press in check_Plot_RPY_ALL. 
function check_Plot_RPY_ALL_Callback(hObject, eventdata, handles) 
% hObject    handle to check_Plot_RPY_ALL (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of check_Plot_RPY_ALL 
  
%Make this default to include the encoder  
if get(handles.check_Plot_RPY_ALL,'Value') == 1 
    set(handles.check_rpy_with_encoder,'Value',1); 
else 
    set(handles.check_rpy_with_encoder,'Value',0); 
end 
  
 
  
% --- Executes on button press in push_Plot. 
function push_Plot_Callback(hObject, eventdata, handles) 
% hObject    handle to push_Plot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% THIS FUNCTION CREATES A SEPARATE PLOT FOR EACH ITEM CHECKED IN THE 
% "OUTPUT FIGURES" PANEL 
  
%title line to be appended to top of all title lines: 
top_title = get(handles.edit_Title_Line,'String'); 
  
%Get the ylim value for the error plots: 
ylim_value = str2num(get(handles.edit_ylim_value,'String')); 
  
%% Plot 1, Encoder & Sensor, but sensor NOT adjusted for errors in intial alignment 
if get(handles.check_Plot_1,'Value')==1 
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    time_en = getappdata(handles.Main,'Time_Encoder'); 
    time_3DM = getappdata(handles.Main,'Time_Sensor'); 
    encoder_angle = getappdata(handles.Main,'Encoder_Angle'); 
    figure; 
    hold; 
    xlabel('Common Elapsed Time (sec)') 
    title({top_title,'Encoder and Sensor Angles','(Sensor Not Adjusted For Alignment 
Errors)'}); 
     
    %plot encoder, in rad or deg 
    if get(handles.radio_Select_Deg,'Value')==1 
        rpy = getappdata(handles.Main,'Sensor_rpy_deg'); 
        ylabel('Angle (Deg)'); 
        plot(time_en(:,2),encoder_angle(:,2),'.') 
    else 
        rpy = getappdata(handles.Main,'Sensor_rpy_rad'); 
        ylabel('Angle(Rad)'); 
        plot(time_en(:,2),encoder_angle(:,3),'.') 
    end 
     
    %plot sensor, roll/pitch/yaw, depending on selected value: 
    if get(handles.radio_1_Roll,'Value')==1 
        plot(time_3DM(:,2),rpy(:,1),'.r') 
        legend('Encoder Displacement','Sensor Roll') 
    elseif get(handles.radio_1_Pitch,'Value')==1 
        plot(time_3DM(:,2),rpy(:,2),'.r') 
        legend('Encoder Displacement','Sensor Pitch') 
    else 
        plot(time_3DM(:,2),rpy(:,3),'.r') 
        legend('Encoder Displacement','Sensor Yaw') 
    end         
end 
  
%% Plot 2, Encoder & Sensor, Sensor adjusted for errors in intial alignment 
if get(handles.check_Plot_2,'Value')==1 
    time_en = getappdata(handles.Main,'Time_Encoder'); 
    time_3DM = getappdata(handles.Main,'Time_Sensor'); 
    encoder_angle = getappdata(handles.Main,'Encoder_Angle'); 
    figure; 
    hold; 
    xlabel('Common Elapsed Time (sec)') 
    title({top_title,'Encoder and Sensor Angles','(Sensor Values Adjusted For Alignment 
Errors)'}); 
     
    %plot encoder, in rad or deg 
    if get(handles.radio_Select_Deg,'Value')==1 
        rpy = getappdata(handles.Main,'Adjusted_rpy_deg'); 
        ylabel('Angle (Deg)'); 
        plot(time_en(:,2),encoder_angle(:,2),'.') 
    else 
        rpy = getappdata(handles.Main,'Adjusted_rpy_rad'); 
        ylabel('Angle(Rad)'); 
        plot(time_en(:,2),encoder_angle(:,3),'.') 
    end 
     
    %plot sensor, roll/pitch/yaw, depending on selected value: 
    if get(handles.radio_2_Roll,'Value')==1 
        plot(time_3DM(:,2),rpy(:,1),'.r') 
        legend('Encoder Displacement','Adjusted Sensor Roll') 
    elseif get(handles.radio_2_Pitch,'Value')==1 
        plot(time_3DM(:,2),rpy(:,2),'.r') 
        legend('Encoder Displacement','Adjusted Sensor Pitch') 
    else 
        plot(time_3DM(:,2),rpy(:,3),'.r') 
        legend('Encoder Displacement','Adjusted Sensor Yaw') 
    end         
end 
  
%% ERROR PLOTS: 
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%this is used to identify the points AFTER the "zero motion time," since 
%we're interested in a DYNAMIC motion anyway. 
tare_index = getappdata(handles.Main,'Tare_Index'); 
  
%roll error: 
if get(handles.check_Error_Plot_Roll,'Value')==1 
    time_3DM = getappdata(handles.Main,'Time_Sensor'); 
    roll_error = getappdata(handles.Main,'Error_Roll');     
     
    figure;hold;       
    if get(handles.radio_Select_Deg,'Value')==1 
        plot(roll_error(:,1),roll_error(:,2),'.b') 
        plot([roll_error(1,1) roll_error(end,1)],[2 2],'r') %top/bottom limits 
        plot([roll_error(1,1) roll_error(end,1)],[-2 -2],'r') 
        ylim([-ylim_value ylim_value]) 
        ylabel('Roll Error (deg)'); 
        rms_error = sprintf('%6.3f',sqrt(mean(roll_error(tare_index:end,2).^2)));%calc 
the RMS error of the dynamic part 
    else 
        plot(roll_error(:,1),roll_error(:,3),'.b') 
        plot([roll_error(1,1) roll_error(end,1)],[2*pi/180 2*pi/180],'r') %top/bottom 
limits 
        plot([roll_error(1,1) roll_error(end,1)],[-2*pi/180 -2*pi/180],'r') 
        ylim([-ylim_value ylim_value]) 
        ylabel('Roll Error (rad)'); 
        rms_error = sprintf('%6.4f',sqrt(mean(roll_error(tare_index:end,3).^2)));%calc 
the RMS error of the dynamic part 
    end 
    xlabel('Common Elapsed Time (sec)') 
    title({top_title,'Calculated Roll Error'});   
    legend(['Roll Error, (RMS = ' rms_error ')'],'Specification Tolerance')                         
end 
  
%pitch error: 
if get(handles.check_Error_Plot_Pitch,'Value')==1 
    time_3DM = getappdata(handles.Main,'Time_Sensor'); 
    pitch_error = getappdata(handles.Main,'Error_Pitch'); 
     
    figure;hold;       
    if get(handles.radio_Select_Deg,'Value')==1 
        plot(pitch_error(:,1),pitch_error(:,2),'.b') 
        plot([pitch_error(1,1) pitch_error(end,1)],[2 2],'r') %top/bottom limits 
        plot([pitch_error(1,1) pitch_error(end,1)],[-2 -2],'r') 
        ylim([-ylim_value ylim_value]) 
        ylabel('Pitch Error (deg)'); 
        rms_error = sprintf('%6.3f',sqrt(mean(pitch_error(tare_index:end,2).^2)));%calc 
the RMS error of the dynamic part 
    else 
        plot(pitch_error(:,1),pitch_error(:,3),'.b') 
        plot([pitch_error(1,1) pitch_error(end,1)],[2*pi/180 2*pi/180],'r') %top/bottom 
limits 
        plot([pitch_error(1,1) pitch_error(end,1)],[-2*pi/180 -2*pi/180],'r') 
        ylim([-ylim_value ylim_value]) 
        ylabel('Pitch Error (rad)'); 
        rms_error = sprintf('%6.4f',sqrt(mean(pitch_error(tare_index:end,3).^2)));%calc 
the RMS error of the dynamic part 
    end 
    xlabel('Common Elapsed Time (sec)') 
    title({top_title,'Calculated Pitch Error'});   
    legend(['Pitch Error, (RMS = ' rms_error ')'],'Specification Tolerance')                         
end 
  
%yaw error: 
if get(handles.check_Error_Plot_Yaw,'Value')==1 
    time_3DM = getappdata(handles.Main,'Time_Sensor'); 
    yaw_error = getappdata(handles.Main,'Error_Yaw'); 
     
    figure;hold;       
    if get(handles.radio_Select_Deg,'Value')==1 
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        plot(yaw_error(:,1),yaw_error(:,2),'.b') 
        plot([yaw_error(1,1) yaw_error(end,1)],[2 2],'r') %top/bottom limits 
        plot([yaw_error(1,1) yaw_error(end,1)],[-2 -2],'r') 
        ylim([-ylim_value ylim_value]) 
        ylabel('Yaw Error (deg)'); 
        rms_error = sprintf('%6.3f',sqrt(mean(yaw_error(tare_index:end,2).^2)));%calc the 
RMS error of the dynamic part 
    else 
        plot(yaw_error(:,1),yaw_error(:,3),'.b') 
        plot([yaw_error(1,1) yaw_error(end,1)],[2*pi/180 2*pi/180],'r') %top/bottom 
limits 
        plot([yaw_error(1,1) yaw_error(end,1)],[-2*pi/180 -2*pi/180],'r') 
        ylim([-ylim_value ylim_value]) 
        ylabel('Yaw Error (rad)'); 
        rms_error = sprintf('%6.4f',sqrt(mean(yaw_error(tare_index:end,3).^2)));%calc the 
RMS error of the dynamic part 
    end 
    xlabel('Common Elapsed Time (sec)') 
    title({top_title,'Calculated Yaw Error'});   
    legend(['Yaw Error, (RMS = ' rms_error ')'],'Specification Tolerance')                         
end 
     
  
%% Raw sensor data plots: 
if get(handles.check_Plot_RPY_ALL,'Value') == 1 
    time_en = getappdata(handles.Main,'Time_Encoder'); 
    time_3DM = getappdata(handles.Main,'Time_Sensor'); 
    encoder_angle = getappdata(handles.Main,'Encoder_Angle'); 
    figure; 
    hold; 
    xlabel('Common Elapsed Time (sec)') 
    title({top_title,'Sensor Roll, Pitch, and Yaw','(Sensor Values NOT Adjusted For 
Alignment Errors)'}); 
     
    %set rpy in rad or deg 
    if get(handles.radio_Select_Deg,'Value')==1 
        rpy = getappdata(handles.Main,'Sensor_rpy_deg'); 
        ylabel('Angle (Deg)');         
    else 
        rpy = getappdata(handles.Main,'Sensor_rpy_rad'); 
        ylabel('Angle(Rad)'); 
    end 
     
    %plot sensor, roll/pitch/yaw, depending on selected value: 
    plot(time_3DM(:,2),rpy,'.') 
     
    %plot encoder, if selected (in deg or rad) & then assign the legend 
    if get(handles.check_rpy_with_encoder,'Value')==1 && ... 
            get(handles.radio_Select_Deg,'Value')==1 
        plot(time_en(:,2),encoder_angle(:,2),'.c') 
        legend('Sensor Roll','Sensor Pitch','Sensor Yaw','Encoder Displacement') 
    elseif get(handles.check_rpy_with_encoder,'Value')==1 && ... 
            get(handles.radio_Select_Rad,'Value')==1 
        plot(time_en(:,2),encoder_angle(:,3),'.c') 
        legend('Sensor Roll','Sensor Pitch','Sensor Yaw','Encoder Displacement') 
    else 
        %no encoder to add, so put the legend in as-is: 
        legend('Sensor Roll','Sensor Pitch','Sensor Yaw') 
    end 
     
end 
  
%% Frequency Analysis Plots 
if get(handles.check_Freq_Analysis,'Value')==1 
    FFT_Data = getappdata(handles.Main,'FFT_Data'); %FFT[angle, w, alpha] 
    Fs = str2num(get(handles.edit_Encoder_Sampling_Freq,'String')); 
    num_points = length(FFT_Data); 
     
    figure;hold 
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    plot(linspace(-Fs/2,Fs/2,num_points),fftshift(abs(FFT_Data(:,1)))); 
    ylabel('Magnitude of the Encoder Frequency Response'); 
    xlabel('Frequency (Hz)') 
    title({top_title,'FFT of Encoder Angle'});   
    legend('Encoder Angle FFT') 
     
    figure;hold 
    plot(linspace(-Fs/2,Fs/2,num_points),fftshift(abs(FFT_Data(:,2)))); 
    ylabel('Magnitude of the Angular Velocity Frequency Response'); 
    xlabel('Frequency (Hz)') 
    title({top_title,'FFT of Calculated Encoder Angular Velocity'});   
    legend('Angular Velocity FFT') 
     
    figure;hold 
    plot(linspace(-Fs/2,Fs/2,num_points),fftshift(abs(FFT_Data(:,3)))); 
    ylabel('Magnitude of the Angular Acceleration Frequency Response'); 
    xlabel('Frequency (Hz)') 
    title({top_title,'FFT of Calculated Encoder Angular Acceleration'});   
    legend('Angular Acceleration FFT') 
                      
end 
  
%% Plot Encoder Data Only , both raw and interpolated: 
if get(handles.check_Plot_Encoder_Only,'Value')==1 
    time_en = getappdata(handles.Main,'Time_Encoder'); 
    time_3DM = getappdata(handles.Main,'Time_Sensor'); 
    encoder_angle = getappdata(handles.Main,'Encoder_Angle'); 
    interpolated_encoder = getappdata(handles.Main,'Interpolated_Encoder'); 
    figure; 
    hold; 
    xlabel('Elapsed Time (sec)') 
    title({top_title,'Encoder Values'}); 
     
    %set rpy in rad or deg 
    if get(handles.radio_Select_Deg,'Value')==1 
        plot(time_en(:,2),encoder_angle(:,2),'.'); 
        plot(time_3DM(:,2),interpolated_encoder(:,2),'.g'); 
        ylabel('Angle (Deg)');         
    else 
        plot(time_en(:,2),encoder_angle(:,3),'.'); 
        plot(time_3DM(:,2),interpolated_encoder(:,3),'.g'); 
        ylabel('Angle (Rad)'); 
    end 
     
    xlim([0 max(time_en(:,2))]) 
    legend('Encoder data, raw','Encoder data, interpolated') 
end 
     
  
  
% --- Executes on button press in radio_Select_Rad. 
function radio_Select_Rad_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_Select_Rad (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_Select_Rad 
  
%only allow 1 to be set at a time: 
set(handles.radio_Select_Rad,'Value',1); 
set(handles.radio_Select_Deg,'Value',0); 
  
%update the error plot default Y-Limits: 
set(handles.edit_ylim_value,'string','0.09') 
set(handles.text_ylim_deg_rad,'String','rad') 
  
  
% --- Executes on button press in radio_Select_Deg. 
function radio_Select_Deg_Callback(hObject, eventdata, handles) 
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% hObject    handle to radio_Select_Deg (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radio_Select_Deg 
  
%only allow 1 to be set at a time: 
set(handles.radio_Select_Rad,'Value',0); 
set(handles.radio_Select_Deg,'Value',1); 
  
%update the error plot default Y-Limits: 
set(handles.edit_ylim_value,'string','5') 
set(handles.text_ylim_deg_rad,'String','deg') 
  
  
% --- Executes on button press in push_Save. 
function push_Save_Callback(hObject, eventdata, handles) 
% hObject    handle to push_Save (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
Save_Vars = getappdata(handles.Main,'Save_Vars'); 
  
%load in all of the variables saved to the appdata 
for m = 1:length(Save_Vars) 
    eval([Save_Vars{m} ' = getappdata(handles.Main,''' Save_Vars{m} ''');']); 
end 
  
%SET THE SAVE NAME (IN THE FUTURE THIS COULD COME FROM USER DATA OR PROMPT) 
[pathstr, name, ext] = fileparts(get(handles.edit_Encoder_File,'String')); 
save_name = [pathstr '\' name ', Analyized Data 1.mat']; 
if exist(save_name,'file') ~=0 
    %allow up to 9 versions of saved data before prompting for a new str 
    for k = 2:9 
        if exist(save_name,'file') ~=0 %if a file exists, name it the next iteration 
            save_name(end-4) = num2str(k); 
        end 
    end 
end 
  
%save all of the variables currently loaded 
save(save_name,Save_Vars{:}); 
  
%begin a clean slate (regarding the save variables) 
setappdata(handles.Main,'Save_Var',{}); 
  
%only allow 1 save per analysis cycle: 
set(handles.push_Save,'Enable','off'); 
  
 
 
% --- Executes on button press in check_Manual_Time_Adjust. 
function check_Manual_Time_Adjust_Callback(hObject, eventdata, handles) 
% hObject    handle to check_Manual_Time_Adjust (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of check_Manual_Time_Adjust 
  
if get(handles.check_Adjust_Sensor_Times,'Value') == 1 
    set(handles.check_Adjust_Sensor_Times,'Value',0);%uncheck the "Peak Align" time 
adjust" 
else 
    set(handles.check_Adjust_Sensor_Times,'Value',1);%check the "Peak Align" time adjust" 
end 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
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set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
  
function edit_Manual_Time_Adjust_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Manual_Time_Adjust (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_Manual_Time_Adjust as text 
%        str2double(get(hObject,'String')) returns contents of edit_Manual_Time_Adjust as 
a double 
  
%check the manual time adjust: 
set(handles.check_Manual_Time_Adjust,'Value',1);%check the manual time adjust 
set(handles.check_Adjust_Sensor_Times,'Value',0);%uncheck the "Peak Align" time adjust 
  
%Let the user know the current GUI settings do not match what's in memory: 
set(handles.text_Data_Updated,'BackgroundColor',[.961,.922,.922]); 
set(handles.text_Data_Updated,'ForegroundColor',[1,0,0]); 
set(handles.text_Data_Updated,'String',{'';'Data Not Updated';''}); 
%disable saving changed data 
set(handles.push_Save,'Enable','off'); 
  
  
% --- Executes during object creation, after setting all properties. 
function edit_Manual_Time_Adjust_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Manual_Time_Adjust (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
 

B. READ_ENCODER_DATA_FILE.M 

function [time_en encoder_angle] = 
Read_Encoder_Data_File(encoder_file,block_size,encoder_frame_period) 
%this function reads an encoder file that has "block_size" number of 
%columns for the count index, the FPGA "ticks," and the data 
  
%The data returned are: 
%time_en = [CPU time]; 
%encoder_angle = [CPU time, degrees, radians]; 
  
%read in the data 
raw_data = textread(encoder_file,'%f'); %read as double array 
  
%reshape the data to be in the same form as the file 
raw_reshaped = reshape(raw_data,3*block_size+2,length(raw_data)/(3*block_size+2))'; 
  
%pull out the timestamp & index at timestamp: 
time_stamp = raw_reshaped(:,1); 
index_at_timestamp = raw_reshaped(:,2); 
  
%separate the the index block & the encoder block 
tick_block = raw_reshaped(:,3:block_size+2); 
index_block = raw_reshaped(:,block_size+3:2*block_size+2); 
encoder_block = raw_reshaped(:,2*block_size+3:end); 
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%get sizes of new blocks: 
[rowB colB] = size(index_block); 
  
%align each into a column vector: 
index = reshape(index_block',rowB*colB,1); 
tick = reshape(tick_block',rowB*colB,1); 
encoder = reshape(encoder_block',rowB*colB,1); 
  
%combine them into one, and modify the encoder to be in radians & degrees: 
data(:,2) = index; 
data(:,3) = encoder.*360/(2^16); 
data(:,4) = encoder.*2*pi/(2^16); 
data(:,5) = tick.*(1/40e6); %one FPGA clock tick @ 40MHz 
  
%using the values from index_at_timestamp, find & include the timestamp data 
%%%%NOTE! CURRENTLY THIS ASSUMES THAT THE VALUE @ THE TIMESTAMP WAS GOOD! 
for k = 1:length(index_at_timestamp) 
    time_index = data(:,2)==index_at_timestamp(k,1).*ones(length(data),1); 
    data(time_index,1) = time_stamp(k,1); 
end 
  
%Next: need to rearrange the data matrix into ascending order of index 
data_sorted = sortrows(data,2); %column 2 has the index 
  
%remove all duplicate lines (use the index in col 2 to detect duplicates) 
no_dupe_index = [true; data_sorted(2:end,2)~=data_sorted(1:end-1,2)]; 
data_no_dupe = data_sorted(no_dupe_index,:); 
  
  
%% Use the existing timestamp & work backwards to timestamp all data 
% use the the given encoder frame interval to timestamp each piece of data. 
data_final = data_no_dupe; 
  
%first need to identify all non-zero time indexes  
non_zero_index = [find(data_no_dupe(:,1)~=0)]; 
  
%assign all the indecies a time based on all of the CPU time stamps and the 
%'tick' times 
data_final(:,1) = process_tick_time(data_final(:,1), data_final(:,5), non_zero_index); 
  
  
%% Format the output: 
time_en = data_final(:,1); 
encoder_angle = data_final(:,[1 3 4 5]); 

C. ENCODER_TSPI 

function [en_ang,w,ang_accel,time_en,accel_xyz,g] = encoder_TSPI(data, time_en, r_pend, 
steady_state,sensor_orientation) 
%UPDATED 4/12/10 
%NOTE: This function translates the actual encoder angle into a 
%displacement angle from the original "zero" point. It assumes the avg of 
%the first 'steady_state' seconds of points at rest are exactly = 0. 
%This fn also takes the encoder angle and derives TSPI data for the angular 
%velocity "w" and the linear acceleration depending on the orientation of 
%the sensor under test. It also returns the angular acceleration "ang_accel" 
  
%INPUTS: 
% "data" should be formatted: [Time encoder(deg) encoder(rad)] 
% r_pend = radius of arc, in meters 
% steady_state = number of seconds at the start that the pendulum wasn't moving 
% sensor_orientation = 'Roll', 'Pitch', or 'Yaw' 
%   -if Roll, assume Y-Axis is direction of travel, Z-Axis is radially down 
%   -if Pitch, assume X-Axis is direction of travel, Z-Axis is radially down 
%   -if Yaw, assume Z-Axis is direction of travel, x-Axis is radially up 
  
%OUTPUTS: 
% en_ang = encoder angle, with corresponding time changes 



 181

% w = angular velocity [time, deg/s, rad/s] 
% ang_accel = angular acceleration [time, deg/s^2, rad/s^2] 
% time_en = [Time, elapsed, delta t] 
% accel_xyz = [Time_elapsed, x accel, y accel, z accel]; IN DEGREES!!! 
% g = gravity used to calculate acceleration truth, based on Lat 
  
%% Calculate delta-t 
time_en(:,3) = [0; time_en(2:end,2)-time_en(1:end-1,2)]; 
  
%% Get the "zero point" & Convert COUNTS to DEGREES 
% NOTE: THIS ASSUMES THE RECORDING BEGAN WITH THE PENDULUM IN THE NEUTRAL  
% POSITION FOR AT LEAST X SECONDS, where X=steady_state & is input at the start. 
  
%Identify the point where elapsed time is greater than steady_state 
tare_index = find(time_en(:,2)>steady_state, 1,'first'); 
  
%Take the most frequently occurring value (i.e. mode) in the data field 
% and set this as the 'zero' point 
zero_deg = mode(data(1:tare_index,2:3)); %zero_deg is formatted: [deg rad] 
  
%Translate the encoder value into degrees of displacement at what time 
en_ang(:,1) = time_en(:,2); %elapsed time 
en_ang(:,2) =  data(:,2) - zero_deg(1).*ones(length(data),1); %encoder angle in degrees 
en_ang(:,3) = data(:,3)- zero_deg(2).*ones(length(data),1); %encoder angle in radians 
  
  
%% Convert encoder position into "TRUTH" data 
  
%Angular Velocity -- Assume Zero Initial Angular Velocity (rad/sec) 
w(:,1) = time_en(:,2); %elapsed time 
w(:,3) = [0; (en_ang(2:end,3) - en_ang(1:end-1,3))./time_en(2:end,3)]; %(delta 
angle)/(delta t) 
w(:,2) = w(:,3).*180/pi; %convert rad to deg 
  
%Angular Acceleration -- Assume Zero Initial Angular Accel (rad/sec^2) 
ang_accel(:,1) = time_en(:,2); %elapsed time on CPU 
ang_accel(:,3) = [0; (w(2:end,2) - w(1:end-1,2))./time_en(2:end,3)]; %(delta anglular 
velocity)/(delta t) 
ang_accel(:,2) = ang_accel(:,3).*180/pi; %convert rad to deg 
  
%% If the encoder data were to be filtered, this is where you'd do it. 
% % % %% Filter the data and re-calculate 
% % % en_ang = Encoder_Filter(en_ang,10,50,1000); %10Hz Pass, 50Hz stop, 1Khz Fs 
% % % en_ang(:,1) = time_en(:,2); 
% % % w(:,2) = [0; (en_ang(2:end,3) - en_ang(1:end-1,3))./time_en(2:end,3)]; %(delta 
angle)/(delta t) 
% % % % w = Encoder_Filter(w,10,50,1000); %10Hz Pass, 50Hz stop, 1Khz Fs 
% % % w(:,1) = time_en(:,2); 
% % % ang_accel(:,2) = [0; (w(2:end,2) - w(1:end-1,2))./time_en(2:end,3)]; %(delta 
anglular velocity)/(delta t) 
% % % % ang_accel = Encoder_Filter(ang_accel,10,50,1000); %10Hz Pass, 50Hz stop, 1Khz Fs 
% % % ang_accel(:,1) = time_en(:,2); 
  
%% Calculate the Linear Accelerations: 
accel_xyz(:,1) = time_en(:,2); 
Lat = 36.6; %Approximate Lattitude of the lab 
g = 9.780318.*(1+(5.3024e-3)*(sin(Lat).^2) - (5.9e-6)*(sin(2*Lat)).^2); %gravity, from 
Titterton 
switch sensor_orientation 
    case 'Roll' 
        % AssumeY-Axis is direction of travel, Z-Axis is radially down 
        accel_xyz(:,3) = ang_accel(:,2).*r_pend + g * sin(en_ang(:,2)); %y axis 
        accel_xyz(:,4) = (w(:,2).^2).*r_pend + g * cos(en_ang(:,2)); %z axis 
    case 'Pitch' 
        % AssumeX-Axis is direction of travel, Z-Axis is radially down 
        accel_xyz(:,2) = ang_accel(:,2).*r_pend + g * sin(en_ang(:,2)); %x axis 
        accel_xyz(:,4) = (w(:,2).^2).*r_pend + g * cos(en_ang(:,2)); %z axis 
    case 'Yaw' 
        % Assume Z-Axis is direction of travel, x-Axis is radially UP 
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        accel_xyz(:,4) = ang_accel(:,2).*r_pend + g * sin(en_ang(:,2)); %z axis 
        accel_xyz(:,2) = -(w(:,2).^2).*r_pend - g * cos(en_ang(:,2)); %x axis (note, 
negative b/c it's flipped) 
end 

 

D. PROCESS_TICK_TIME.M 

function time = process_tick_time(timeCPU, tick_time, non_zero_index) 
%this function rectifies the time by creating a column vector of times 
%based on the time the whole set was pulled. Each column contains the times 
%of all, referenced to a single 'pull'. The output "time" is the average of 
%all of the time vectors 
  
  
%RATHER THAN USING EVERY SINGLE POINT THAT HAD A CPU TIMESTAMP, CHOOSE ONLY 
%100 POINTS FOR TO GO EASY ON THE MEMORY (should still give similar results)  
% all_times = zeros(length(timeCPU),length(non_zero_index)); %initialize for optimization 
all_times = zeros(length(timeCPU),100); %initialize for optimization 
L = length(timeCPU); 
column_index = 1; 
  
%Old version used --> 1:length(non_zero_index) 
for index = round(linspace(1,length(non_zero_index),100))  
    %identify the tick value of the current time 
    now_tick_time = tick_time(non_zero_index(index)); 
     
    %set all_times to the current CPU time at the correct index 
    all_times(non_zero_index(index),column_index) = timeCPU(non_zero_index(index)); 
     
    %identify the indicies of the times lower than current 
    lower = 1:non_zero_index(index)-1; 
     
    %identify the indicies of the times higher than current 
    higher = non_zero_index(index)+1:L; 
     
    %set the lower times (current tick time - prev) 
    all_times(lower,column_index) = ... 
        all_times(non_zero_index(index),column_index) - (now_tick_time - 
tick_time(lower)); 
     
    %set the higher times (current tick time + next) 
    all_times(higher,column_index) = ... 
        all_times(non_zero_index(index),column_index) + (tick_time(higher) - 
now_tick_time); 
     
    %increment the column index 
    column_index = column_index + 1; 
end 
  
%Once they're all collected Average them here! 
time(:,1) = mean(all_times'); 
% time(:,1) = median(all_times'); 

  
 

E. SENSOR_TIME_ALIGN.M 

function [time_3DM,time_error] = sensor_time_align(time_en, time_3DM, encoder_angle, 
rpy_deg, sensor_orientation) 
%this function searches blocks to try to find the sinusoidal peaks and then 
%to identify the average lag between  
  
w = 200; %this is the window size (number of points used to find encoder peak) 
  
encoder_peak_index = []; %this will have the index of all of the encoder "peaks" 
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peak_time = []; %this will have the actual values of the peak time & value 
was_a_peak = false; 
  
%rpy_column is set to the col index where the roll, pitch, yaw data are, 
%depending upon what the encoder was representing (matches the angles) 
switch sensor_orientation 
    case 'Roll' 
        rpy_column = 1; 
    case 'Pitch' 
        rpy_column = 2; 
    case 'Yaw' 
        rpy_column = 3; 
end 
  
%find the encoder peaks (using a "w" point window with 10 points overlapping: 
for m = 1:w-5:length(time_en)-2.*w %throw out 2 windows worth at the end 
    [emax emaxI]= max(encoder_angle(m:m+w,2)); %use only degrees 
    [emin eminI] = min(encoder_angle(m:m+w,2)); 
    %if the max index minus the min index isn't within 10 points of the 
    %window size, then assume that there was a peak 
    if abs(emaxI - eminI) < w-6 %throw out the variation around the end 3 pts 
        %identify if it's a max or a min 
        if abs(encoder_angle(m+emaxI-1,2)) > abs(encoder_angle(m+eminI-1,2)) %MAX 
            encoder_peak_index = [encoder_peak_index;m+emaxI-1]; 
            local_peak_index = m+emaxI-1; 
            was_a_peak = true; 
        elseif abs(encoder_angle(m+eminI-1,2)) > abs(encoder_angle(m+emaxI-1,2)) 
            encoder_peak_index = [encoder_peak_index;m+eminI-1]; 
            local_peak_index = m+eminI-1; 
            was_a_peak = true; 
        end 
         
        if was_a_peak 
            %find out how many times that particular value occurs 
            %consecutively, with a max number of repeated being the window size 
            local_max_val_ind = 
find(encoder_angle(local_peak_index:local_peak_index+w,2)... 
                == encoder_angle(local_peak_index,2),w,'first'); 
            peak_time = [peak_time ;median(time_en(local_peak_index-
1+local_max_val_ind,2)) encoder_angle(local_peak_index,2)]; 
             
            %reset the flag 
            was_a_peak = false; 
        end 
    end 
end 
  
%find the encoder peaks using 5 point windows and the same process: 
sw = 10; %this is the sensor window size (#points used to find a peak) 
sen_peak_index = []; %this will have the index of all of the encoder "peaks" 
sen_peak_time = []; %this will have the actual values of the peak time & value 
was_a_peak = false; 
for m = 1:sw-2:length(time_3DM)-2*sw %throw out 1 window worth at the end 
    [emax emaxI]= max(rpy_deg(m:m+sw,rpy_column)); %use only degrees 
    [emin eminI] = min(rpy_deg(m:m+sw,rpy_column)); 
    %if the max index minus the min index isn't within 1 points of the 
    %window size, then assume that there was a peak 
    if abs(emaxI - eminI) < sw-1 %then there was a peak 
        %identify if it's a max or a min 
        if abs(rpy_deg(m+emaxI-1,rpy_column)) > abs(rpy_deg(m+eminI-1,rpy_column)) %MAX 
            sen_peak_index = [sen_peak_index;m+emaxI-1]; 
            local_peak_index = m+emaxI-1; 
            was_a_peak = true; 
        elseif abs(rpy_deg(m+eminI-1,rpy_column)) > abs(rpy_deg(m+emaxI-1,rpy_column)) 
            sen_peak_index = [sen_peak_index;m+eminI-1]; 
            local_peak_index = m+eminI-1; 
            was_a_peak = true; 
        end 
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        if was_a_peak 
            %find out how many times that particular value occurs 
            %consecutively, with a max number of repeated being the window size 
            local_max_val_ind = 
find(rpy_deg(local_peak_index:local_peak_index+5,rpy_column)... 
                == rpy_deg(local_peak_index,rpy_column),sw,'first'); 
            sen_peak_time = [sen_peak_time ;median(time_3DM(local_peak_index-
1+local_max_val_ind,2))... 
                rpy_deg(local_peak_index,rpy_column)]; 
             
            %reset the flag 
            was_a_peak = false; 
        end 
    end 
end 
  
%throw out all peaks with negative elapsed times 
non_neg_e = peak_time(:,1)>0; 
non_neg_s = sen_peak_time(:,1)>0; 
peak_time = peak_time(non_neg_e,:); 
sen_peak_time = sen_peak_time(non_neg_s,:); 
  
% ONLY COUNT A PEAK IF IT DEVIATES MORE THAN 0.5 DEG FROM PREVIOUS PEAK 
e_pk_ind = [abs(peak_time(1:end-1,2)-peak_time(2:end,2))>0.5 ; true]; 
s_pk_ind = [abs(sen_peak_time(1:end-1,2)-sen_peak_time(2:end,2))>0.5 ; true]; 
peak_time = peak_time(e_pk_ind,:); 
sen_peak_time = sen_peak_time(s_pk_ind,:); 
  
  
%Finally, find the difference in the peaks and take the average time delta 
%and add it to the 3DM time 
if length(sen_peak_time) <= length(peak_time) %then fewer sensor peaks were identified 
than encoder peaks 
    original_length = length(sen_peak_time); 
    sen_peak_time(length(peak_time),2) = 0; %make the two the same length 
    for m = 1:original_length         
        [min_val en_ind] = min(abs(peak_time(m,1) - sen_peak_time(:,1))); %find the 
closest match 
        delta(m,1) = sen_peak_time(en_ind,1) - peak_time(m,1); %calc delta at closest 
match      
    end 
    sen_peak_time = sen_peak_time(1:original_length,:); %reset back to original size 
else %then fewer encoder peaks were identified than sensor peaks 
    original_length = length(peak_time); 
    peak_time(length(sen_peak_time),2) = 0; %make the two the same length 
    for m = 1:original_length 
        [min_val en_ind] = min(abs(peak_time(m,1) - sen_peak_time(:,1))); %find the 
closest match 
        delta(m,1) = sen_peak_time(en_ind,1) - peak_time(m,1); %calc  
    end 
    peak_time = peak_time(1:original_length,:); %reset back to original size 
end 
  
% % % %%Uncomment this to plot the peaks identified, etc... 
% % % figure; 
% % % plot(time_3DM(:,2),rpy_deg(:,rpy_column),'.m') 
  
%DISCARD ANY TIME DELTAS OUTSIDE OF ~0.050 seconds (figure that these don't 
%correspond to 'matching' peaks) 
delta = delta(abs(delta(:,1)) < 0.050); 
  
%TAKE THE MEAN AND ADD IT TO THE OUTPUT TIME. 
time_3DM(:,1:2) = time_3DM(:,1:2) - mean(delta); 
  
% % % %%Uncomment this to plot the peaks identified, etc... 
% % % %visualize results: 
% % % hold 
% % % plot(time_en(:,2), encoder_angle(:,2),'.b') 
% % % plot(time_en(encoder_peak_index,2),encoder_angle(encoder_peak_index,2),'*r') 
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% % % plot(time_3DM(:,2),rpy_deg(:,rpy_column)-mean(rpy_deg(1:30,rpy_column)),'.r') 
% % % plot(peak_time(:,1),peak_time(:,2),'vk') 
% % % plot(sen_peak_time(:,1),sen_peak_time(:,2),'vg') 
% % % disp('Done') 
  
time_error = mean(delta); 
% display(['Microstrain Sensor Timing Off By: ' num2str(mean(delta))]); 

     

F. ENCODER_FILTER.M 

function filtered_data = Encoder_Filter(data,Fpass,Fstop,Fs) 
% this function takes any data input and passes the columns through an FIR 
% Low pass filter defined by the given characteristics, assuming equiripple 
% with a 30dB attenuation 
  
% data = [time, any number of data columns]; 
% Fpass = passband frequency, in Hz; 
% Fstop = stopband frequency, in Hz; 
% Fs = sampling frequency, in Hz; 
  
% filtered_data = [time, filtered data columns]; 
  
%% Determine the order of the filter 
rp = .01;           % Passband ripple in dB 
rs = 40;          % Stopband ripple in dB 
f = [Fpass Fstop];    % Cutoff frequencies 
a = [1 0];        % Desired amplitudes 
% Compute deviations 
dev = [(10^(rp/20)-1)/(10^(rp/20)+1)  10^(-rs/20)];  
[n,fo,ao,w] = firpmord(f,a,dev,Fs); 
  
disp(['Filter Order: n = ' num2str(n)]) 
  
%get the coefficients of the filter: 
b = firpm(n,fo,ao,w); 
  
%% Filter the Data: 
time = data(:,1); %save this for later 
filtered_data = filter(b,1,data); %FIR filter 
filtered_data(:,1) = time(:,1); 
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